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1. Introduction

Consider the following basic problem in comparative statics: an agent chooses

the action x ∈ X ⊂ R to maximize her objective v(x; s), where s ∈ S ⊂ R is

some parameter; how does argmaxx∈Xv(x; s) vary with s? It is well-known that

argmaxx∈XV (x; s) increases with s if the family {v(·; s)}s∈S obeys single crossing

differences; this means that, for any x′′ > x′, the function δ(s) = V (x′′; s) − V (x′; s)

has the single crossing property, in the sense that δ crosses the horizontal axis just

once, from negative to positive, as s increases (see Milgrom and Shannon (1994)). This

simple but powerful result is useful when one is interested in comparative statics for

its own sake (for example, when considering an agent’s portfolio allocation problem)

or when monotonicity is needed for establishing some other result (like equilibrium

existence in supermodular games (see Milgrom and Roberts (1990) and Vives (1990)).

However, single crossing differences cannot always be directly assumed or easily

derived from primitive assumptions. In certain problems, especially problems in-

volving uncertainty, establishing that the property holds for a particular family of

objective functions is nontrivial. For example, consider an agent who maximizes ex-

pected payoff V (x; s) =
∫
T
v(x; s, t) dF (t), where t represents a possible state of the

world and F the distribution over those states. Suppose that {v(·; s, t)}s∈S obeys sin-

gle crossing differences, so that the optimal action increases with parameter s if the

state t is known; in general, this is not sufficient to guarantee that {V (·; s)}s∈S obeys

single crossing differences, so we cannot conclude that argmaxx∈XV (x; s) increases

with s.

A similar problem arises in an n-player Bayesian games where each player i takes

an action after observing a signal si ∈ [0, 1]. Signal si may convey direct information

about player i’s payoff function and also indirect information on the actions of other

players in the game (through the joint distribution on players’ signals). In this case,
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it can be shown that the player i’s objective function takes the form

Vi(x; si) =

∫
[0,1]n−1

vi(x; s) dF (s−i|si) ds−i, (1)

where F (s−i|si) gives the distribution of s−i conditional on observing si. The existence

of a Bayesian-Nash equilibrium where each player plays a monotone strategy (i.e., a

strategy where the action increases with the player’s signal) hinges on whether a par-

ticular player has an optimal strategy that is monotone, given that other players are

playing monotone strategies (see Athey (2001)). Since, in essence, this involves check-

ing that argmaxx∈XVi(x; si) is increasing in si, it is desirable to have {Vi(·; si)}si∈[0,1]

obey single crossing differences; however, this property may not hold, even when

{vi(·; s)}s∈[0,1]n obeys single crossing differences and the signals are affiliated.

While the problems we considered could be solved in specific contexts using vari-

ous ad hoc techniques, there has been no attempt at developing a general theory that

addresses them systematically. We think that these problems are best understood as

arising from the fact that the single crossing property is not preserved with aggrega-

tion; in other words, the sum of two functions with the single crossing property does

not generally add up to another function with this property. In this paper we provide

a careful examination of the conditions under which the single crossing property is

preserved with aggregation. Obviously, one situation in which this is true is when the

functions are increasing, so that the sum is also increasing – what is interesting is that

this is not the only situation in which the single crossing property is preserved. We

demonstrate the value of our theory by showing how various known – and seemingly

disparate – techniques for establishing the single crossing property can be understood

as special cases of the theory and also show how it could lead to more general results

in some significant applications.

The paper is organized as follows. In Section 2, we provide basic definitions and

more careful motivation for the paper. Section 3 identifies the precise mathemati-

cal conditions under which the single crossing property is preserved by aggregation.
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Those results are applied in Section 4 to the problem of a risk averse monopolist who

makes output decisions under uncertainty; we identify conditions under which opti-

mal output falls as input prices increase. While this problem may seem very basic,

to the best of our knowledge, it has not been solved at this level of generality.

Sections 5 and 6 deal with the aggregation issues that arise when considering

functions with the single crossing property that are defined on multi-dimensional do-

mains. In particular, we identify the condition on {vi(·; s)}s∈[0,1]n that is necessary

and sufficient to guarantee that {Vi(·; si)}si∈[0,1] (as defined by (1)) obeys single cross-

ing differences, given that the signals {si}i≥1 are affiliated. The well-known result

that Vi is logsupermodular in (x; si) when vi is logsupermodular in (x, s) can be ob-

tained as a special case of our result. In another application, we consider a Bayesian

game where risk averse firms producing substitutable (but non-identical) goods en-

gage in price competition. We identify conditions under which each firm’s optimal

strategy is monotone, given that other firms are playing monotone strategies, which

(along with some other ancillary conditions) is sufficient to guarantee the existence of

a Bayesian-Nash equilibrium in monotone strategies (via Athey’s (2001) equilibrium

existence result).

Lastly, in Section 7, we use our results to extend the work of Reny and Zamir

(2004), who identified very general conditions under which a first-price (single-unit)

auction has an equilibrium in monotone bidding strategies; unlike the previous lit-

erature, they allow for multiple and asymmetric bidders with interdependent values.

A crucial assumption in their theorem is that the payoff difference to each bidder

between making a high bid and a low bid becomes weakly smaller (in absolute terms)

as the state becomes more favorable (formally if s is higher). While this assumption is

reasonable in many settings, it can be violated if a higher bid imposes an opportunity

cost on the bidder that is higher in more favorable states. We use our techniques to

weaken their condition: loosely speaking, we show that an equilibrium exists so long

as the payoff difference between a high bid and a low bid becomes smaller in relative
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terms as the state becomes more favorable.1

2. Basic Concepts and Motivation

Let (S,≥) be a partially ordered set and consider a family of functions {u(·; s)}s∈S,

where each u(·; s) is real-valued and has domain X ⊂ R. We interpret X as the

possible actions of an agent, u(·; s) as his objective function, and s as some parameter.

We say that the family {u(·; s)}s∈S obeys single crossing differences if, for any x′′ > x′,

the function ∆ : S → R defined by ∆(s) = u(x′′, s) − u(x′, s) has the single crossing

property. A function ∆ has the single crossing property if it satisfies the following:

∆(s′) ≥ (>) 0 =⇒ ∆(s′′) ≥ (>) 0 whenever s′′ > s′. (2)

In the case where S is an interval of the real line, the graph of ∆ is a curve that

crosses the horizontal axis just once, hence the term ‘single crossing’. We refer to a

function that obeys the single crossing property as a single crossing function or an S

function. Clearly, {u(·; s)}s∈S obeys single crossing differences if it obeys increasing

differences; by this we mean that, for any x′′ > x′, ∆ is an increasing function.2

Single crossing differences is important because it guarantees thatX∗(s) ≡ argmaxx∈Xu(x; s)

is increasing with s. Since X∗(s) is not necessarily unique, we need to explain what

we mean when we say that it increases with s. Let K ′ and K ′′ be two subsets of

R; K ′′ dominates K ′ in the strong set order (we write K ′′ ≥ K ′) if for any for x′′

in K ′′ and x′ in K ′, we have max{x′′, x′} ∈ K ′′ and min{x′′, x′} ∈ K ′.3 It follows

immediately from this definition that if K ′′ = {x′′} and K ′ = {x′}, then x′′ ≥ x′.

More generally, suppose that both sets contain their largest and smallest elements.

1Strictly speaking, our result does not fully generalize Reny and Zamir’s because we impose an

additional (but, we think, innocuous) assumption that each agent’s payoff is decreasing in his bid.
2Our use of the term single crossing differences follows Milgrom (2004). In Milgrom and Shannon

(1994), a family of objective functions that obey (what we call) single crossing differences is said to

obey the single crossing property.
3See Topkis (1998); note that this definition of the strong set order makes sense on any lattice.
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Then it is clear that the largest (smallest) element in K ′′ is larger than the largest

(smallest) element in K ′.4 The following fundamental result says that single crossing

differences is sufficient and (in a sense) necessary for monotone comparative statics.

Theorem 1 (Milgrom and Shannon (1994)) The family {u(·; s)}s∈S obeys single cross-

ing differences if and only if argmaxx∈Y u(x; s′′) ≥ argmaxx∈Y u(x; s′) for any s′′ > s′

and any Y ⊆ X.5

The usefulness of this result depends on whether there are many modeling sce-

narios where single crossing differences holds; indeed, there are many such situations

and for this reason this theorem has been extensively used in the literature. However,

it is not always the case that single crossing differences can be directly assumed or

easily derived, and the contribution of this paper is precisely to study some of those

cases. We consider two problems that serve to motivate our paper.

Problem 1. Consider an optimization problem in which the payoff of action x in

state t is v(x; s, t), where s is a parameter. We assume that t is drawn from the interval

T ⊂ R and for each t, the family {v(·; s, t)}s∈S obeys single crossing differences. If the

agent knows for certain that state t = t̄ will occur, then he chooses action x to maxi-

mize v(x; s, t̄); since {v(·; s, t̄)}s∈S obeys single crossing differences, we may conclude

that the optimal action x will increase with the parameter s. However, since the state

is uncertain, the agent maximizes his expected utility V (x; s) =
∫
T
v(x; s, t)λ(t) dt,

where λ is the subjective probability of state t. If we wish to guarantee that the op-

timal action increases with s, we need {V (·; s)}s∈S to obey single crossing differences.

4Throughout this paper, when we say that something is ‘greater’ or ‘increasing’, we mean to say

that it is greater or increasing in the weak sense. Most of the comparisons in this paper are weak, so

this convention is convenient. When we are making a strict comparison, we shall say so explicitly,

as in ‘strictly higher’, ‘strictly increasing’, etc.
5This is a special case of Milgrom and Shannon’s result, which considers the more general case

where X is a lattice rather than a subset of R.
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In other words, for any x′′ > x′, we require the map s 7→ V (x′′; s)− V (x′; s) to be an

S function. Note that

V (x′′; s)− V (x′; s) =

∫
T

[v(x′′; s, t)− v(x′, s, t)] λ(t) dt

=

∫
T

∆(s, t)λ(t) dt,

where, for each t, the function ∆(·; t) given by ∆(s; t) = v(x′′; s, t) − v(x′, s, t) is an

S function (since {v(·; s, t̄)}s∈S obeys single crossing differences). So effectively we

face the following problem: when is an integral (or sum) of single crossing functions

a single crossing function?

Problem 2. Let {u(·; s)}s∈S be a family of functions parameterized by s, where, in

this case, we assume that S is an interval of R. We assume that this family obeys

single crossing differences, so that the optimal action is increasing in s. Interpreting

s to be the state of the world, an agent has to choose his action x under uncertainty

(before s is realized) but after observing a signal θ ∈ Θ ⊂ R. The agent maximizes the

expected utility U(x; θ) =
∫

S u(x; s)λ(s|θ) ds where λ(·|θ) is his posterior distribution

over s after observing signal θ. It is natural to expect, given our assumptions, that the

optimal action will be higher if higher states are more likely. Indeed, it is possible to

formalize this intuition. Suppose that the joint distribution over (s, θ) is affiliated in

the sense that its distribution is represented by a logsupermodular density function.

In this case, the posterior density functions {λ(·|θ)}θ∈Θ are ordered by the monotone

likelihood ratio (MLR), i.e., whenever θ′′ > θ′, the ratio λ(s|θ′′)/λ(s|θ′) is increasing

in s. This guarantees that the family {U(·; θ)}θ∈Θ obeys single crossing differences

(see Athey (2002)), so that higher signals lead to higher actions.

However, in many problems, the state cannot be adequately captured by a one-

dimensional variable. So consider instead the case where the state s = (s1, s2) ∈

S1 × S2, where Si (for i = 1 and 2) are intervals of R. Once again assume that

{u(·; s)}s∈S obeys single crossing differences and that the joint density function λ

over (s1, s2, θ) is logsupermodular. Is this sufficient to guarantee that {U(·; θ)}θ∈Θ
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obeys single crossing differences? It turns out that the answer is ‘No’; to see why

that may be so, let x′′ and x′ be two actions. Then

U(x′′; θ)− U(x′; θ) =

∫
S2

∫
S1

[u(x′′; s1, s2)− u(x′; s1, s2)] λ(s1, s2|θ) ds1 ds2

=

∫
S2

∆(θ; s2)ds2

where ∆(θ; s2) =
∫
S1

[u(x′′; s1, s2)− u(x′; s1, s2)] λ(s1, s2|θ) ds1. It is not hard to see

that the one-dimensional result cited above allows us to conclude that, for each s2,

∆(·; s2) is an S function (of θ). However, to guarantee that {U(·; θ)}θ∈Θ obeys single

crossing difference (equivalently, to guarantee that the map θ 7→ U(x′′; θ) − U(x′; θ)

is an S function), we face, once again, the following question: when is an integral (or

sum) of single crossing functions a single crossing function?

The next section provides a systematic treatment of this issue.

3. Aggregating Single Crossing Functions

It is straightforward to check that the sum of two single crossing (or S) functions

is not necessarily a single crossing function. However, the property is preserved by

aggregation if the two S functions are related in a particular way. This section is

devoted to identifying that relation and examining its properties.

Consider the set of S functions defined on the partially ordered set (S,≥). We

define the binary relation ∼ on this set in the following way. We say that h ∼ g if

(a) at any s′ ∈ S, such that g(s′) < 0 and h(s′) > 0, we have

−g(s′)

h(s′)
≥ −g(s′′)

h(s′′)
when s′′ > s′; and (3)

(b) at any s′ ∈ S, such that h(s′) < 0 and g(s′) > 0, we have

−h(s′)

g(s′)
≥ −h(s′′)

g(s′′)
when s′′ > s′.

It follows immediately from this definition that ∼ is a reflexive relation and it is easy

to see that it is not transitive. A quick check will also confirm that if h ∼ g then

8



αh ∼ βg where α and β are nonnegative scalars. We shall refer to two single crossing

functions that are related by ∼ as S-summable; a family of single crossing functions

in which any two functions are related to each other is said to be an S-summable

family. The motivation for this term and the significance of the relation ∼ rests on

the following result.

Proposition 1 Let h and g be two S functions. Then αh + g is an S function for

all positive scalars α if and only if h ∼ g.

Proof: We first show that it is necessary for h ∼ g. With no loss of generality, suppose

g(s′) < 0 and h(s′) > 0. Define α′ = −g(s′)/h(s′) > 0 and note that α′h(s′) + g(s′) =

0. Since α′h + g is an S function, for any s′′ > s′, we have α′h(s′′) + g(s′′) ≥ 0.

Re-arranging this inequality and bearing in mind that h(s′′) > 0 (since h is an S

function and h(s′) > 0), we obtain

α′ = −g(s′)

h(s′)
≥ −g(s′′)

h(s′′)
.

For the other direction, suppose

αh(s′) + g(s′) ≥ (>) 0. (4)

If g(s′) ≥ 0 and h(s′) ≥ 0 then we have g(s′′) ≥ 0 and h(s′′) ≥ 0 since g and h are S

functions. It follows that

αh(s′′) + g(s′′) ≥ 0. (5)

If the inequality (4) is strict then (5) will also be strict since either g(s′) > 0 or

h(s′) > 0.

Now consider the case where (4) holds but one of the two functions is negative at

s′. Suppose that g(s′) < 0. Then h(s′) > 0 since (4) holds. For any s′′ > s′,

α ≥ (>)− g(s′)

h(s′)
≥ −g(s′′)

h(s′′)

where the first inequality follows from (4) and the second from the fact that f ∼ g.

Re-arranging this inequality, we obtain αh(s′′) + g(s′′) ≥ (>) 0. (Note that h(s′′) > 0
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since h is an S function and h(s′) > 0.) QED

It is clear that if h and g are increasing functions then they are S-summable.

For another simple example, suppose S = R and consider h(s) = s2 + 1 and g(s) =

s3. In this case h is not an increasing function but we still have h ∼ g. This

is easy to check: for s > 0, we have −g(s)/h(s) < 0, while for s < 0, the ratio

−g(s)/h(s) = −s3/(s2 + 1) is positive and decreasing in s. Therefore, by Proposition

1, f(s) = α(s2 + 1) + s3 is an S function for any α > 0. Note that if h and g

are S-summable functions defined on a subset of R, then h̃ = h ◦ φ and g̃ = g ◦ φ

are also S-summable, where φ is an increasing function defined on a (not necessarily

one-dimensional) domain. For example, if we choose φ(s1, s2) = s1 +s2, the functions

h̃(s1, s2) = (s1 + s2)2 + 1 and g̃(s1, s2) = (s1 + s2)3 are S-summable on the domain

R× R.

The next result is a natural extension of Proposition 1.

Proposition 2 Suppose F = {fi}1≤i≤M is an S-summable family. (i) Then
∑M

i=1 αi fi,

where αi ≥ 0 for all i, is an S function. (ii) Suppose h is an S function and h ∼ fi

for all i. Then h ∼
∑M

i=1 fi.

Proof: (i) Note that if F is an S-summable family then {αifi}1≤i≤M (where αi ≥ 0

for i = 1, 2, ...,M) is also an S-summable family. Given this, we need only show that

F =
∑M

i=1 fi is an S function.

Suppose that F (s′) ≥ 0; we are required to show that F (s′′) ≥ 0 for any s′′ > s′. If

fi(s
′) ≥ 0 for all i, then fi(s

′′) ≥ 0 for all i, so we obtain F (s′′) ≥ 0. Consider next the

case where fi(s
′) < 0 for some i. In this case, we may partition F into three subsets;

for fi ∈ F1, we have fi(s
′) < 0; for fi ∈ F2, we have fi(s

′) > 0; and for fi ∈ F3,

we have fi(s
′) = 0. Since F1 is nonempty, so is F2. By ‘splitting’ the functions in

F1 and F2 if necessary and adding functions in F1 with those in F2, we may write

F =
∑L

j=1 gj such that gj(s
′) ≥ 0 for all j and each gj is the weighted sum of at
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most two functions in F ; formally, for each gj there are functions fm and fn in F and

nonnegative scalars βm and βn such that gj = βmfm+βnfn. By Proposition 1, gj is an

S function, so we have gj(s
′′) ≥ 0 for all j. This gives F (s′′) ≥ 0. A straightforward

modification of this argument shows that if F (s′) > 0 then F (s′′) > 0.

(ii) In this case, {f1, f2, ..., fM , h} form an S-summable family so, by (i),
∑M

i=1 fi is

an S function and, for any α > 0, the function αh+
(∑M

i=1 fi

)
is also an S function.

By Proposition 1, this implies that h ∼
∑M

i=1 fi. QED

As an illustration of Proposition 2, note that f1(s) = 1/s, f2(s) = −1/s2 and

f3(s) = 1 (defined on S = R+) are S-summable; hence each of these functions is

∼-related to the S function ψ(s) = s−1 − 2s−2 + 1 (amongst others). The curve of ψ

crosses the horizontal axis once at s = 1, has its peak at (4, 1.125), and approaches 1

as s approaches infinity. In the light of Proposition 2, the next result should not be

surprising. It says that the integral of an S-summable family is an S function.

Theorem 2 Let T be a measurable subset of R and {f(·, t)}t∈T an S-summable family

indexed by elements in T and defined on S. For any fixed s, f(s, ·) is a measurable

and bounded function (of t). (i) Then the function F : S → R defined by F (s) =∫
T
f(s, t)dt is also an S function. (ii) If g is an S function and g ∼ f(·, t) for all

t ∈ T , then g ∼ F .

The proof of Theorem 2 is in the Appendix. The next result is, in one guise or

another, well-known, and has many applications, especially in comparative statics

problems under uncertainty (see, for example, Jewitt (1987), Gollier (2001), and

Athey (2002)). It is a straightforward consequence of Theorem 2 (for the alternative

and more familiar proof see, for example, Athey (2002)).

Corollary 1 Let T be a measurable subset of R and K a subset of R. Suppose

f : T → R is an S function and that g : T × K → R++ is a logsupermodular
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function.6 Then F : K → R is an S function, where F (k) =
∫
T
f(t)g(t, k) dt.

Proof: By Theorem 2, we need only show that {φ(·, t)}t∈T , where φ(k, t) = f(t)g(t, k),

is an S-summable family (parameterized by t ∈ T ). Note that φ(·, t) is either a pos-

itive or negative (depending on the sign of f(t)), so it is clearly an S function (of

k). Suppose φ(k∗, t′) < 0 and φ(k∗, t′′) > 0. Since f is an S function, t′′ > t′. For

k∗∗ > k∗ we have

− φ(k∗, t′)

φ(k∗, t′′)
= − f(t′)g(t′, k∗)

f(t′′)g(t′′, k∗)
≥ − f(t′)g(t′, k∗∗)

f(t′′)g(t′′, k∗∗)

= − φ(k∗∗, t′)

φ(k∗∗, t′′)
,

where the inequality follows from the logsupermodularity of g. So we have shown

that φ(·, t′) ∼ φ(·, t′′). QED

Suppose S = [s, s̄] and let f be a bounded and measurable function defined on

this interval. For some point ŝ in the interior of S, and a ≤ ŝ, define the function

f̂ : {a} ∪ (ŝ, s̄]→ R by

f̂(s) =


∫

[s,ŝ]
f(z)dz if s = a

f(s) if s ∈ (ŝ, s̄]
(6)

It is clear that this domain coarsening preserves the single crossing property, in the

sense that f̂ is an S function if f is an S function. Indeed, we may go further. The

function f̄ , defined on the two-point domain {0, 1} by

f̂(s) =


∫

[s,ŝ]
f(z)dz if s = 0∫

(ŝ,s̄]
f(z)dz if s = 1

(7)

is also an S function if f is an S function. The next result states that the ∼ relation

is closed under domain coarsening; it will be extended in Section 5 and is eventually

used in our proof of equilibrium existence in first-price auctions in Section 7.

6We define a function as logsupermodular if its logarithm is a supermodular function.
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Proposition 3 Suppose f and g are bounded and measurable S functions defined on

S = [s, s̄]. (i) Then the functions f̂ and ĝ (with ĝ defined by (6), in an analogous

way to f̂) satisfy f̂ ∼ ĝ. (ii) The functions f̄ and ḡ (with ḡ defined by (7), in an

analogous way to f̄) also satisfy ḡ ∼ f̄ .

Proof: We omit the proof of (ii), which is similar to that of (i). To prove (i),

note that (by Proposition 1) it suffices to show that h = αf̂ + ĝ is an S function

for any positive scalar α. The only interesting case to consider is the one where

h(a) = αf̂(a) + ĝ(a) ≥ (>) 0. Then
∫

[s,ŝ]
αf(z) + g(z) dz ≥ (>) 0, which implies

that there is z̃ ∈ [s, ŝ] such that αf(z̃) + g(z̃) ≥ (>) 0. This guarantees that h(s) =

αf(s) + g(s) ≥ (>) 0 for all s > ŝ ≥ z̃, since αf + g is an S function (by Proposition

1 again). QED

4. Single crossing differences and comparative statics

We are now in a position to re-visit Problem 1 (see Section 2), in which an agent

chooses x to maximize V (x; s) =
∫
T
v(x; s, t)λ(t) dt. To guarantee that the optimal

choice of x increases with the parameter s, it suffices that {V (·; s)}s∈S obeys single

crossing differences; Theorem 2 tells us that this holds if, for any x′′ > x′ and t, the

function ∆(·, t) given by

∆(s, t) = v(x′′; s, t)− v(x′, s, t), (8)

is an S function (of s) and that {∆(·, t)}t∈T is an S-summable family.

For this result to be useful it is important that there is a simple way of checking

that a family of single crossing functions is S-summable. In many applications, v =

h◦φ, where φ is the (monetary) payoff, which depends on (x, s, t), and h is the agent’s

Bernoulli utility function. In this case, it is possible to write down conditions on φ

and h which together guarantee that {∆(·, t)}t∈T form an S-summable family. We

provide this in the next proposition.
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Proposition 4 Let X be a subset of R, S a partially ordered set, and T a totally

ordered set. Then {∆(·, t)}t∈T (with ∆ defined by (8) and where v = h ◦ φ) is an

S-summable family if φ : X × S× T → R and h have the following properties:

(i) for any given t, {φ(·; s, t)}s∈S obeys increasing differences;

(ii) for any given s, {φ(·; s, t)}t∈T obeys single crossing differences;

(iii) h : R→ R is twice differentiable, with h′ > 0 and −h′′(z)/h′(z) decreasing in z,

i.e., h exhibits decreasing absolute risk aversion (DARA);

(iv) φ is increasing in (s, t); and

(v) any of the following: (a) for every x and s′′ > s′, φ(x, s′′, t) − φ(x, s′, t) is in-

dependent of t; (b) h is concave and for every x and s′′ > s′, φ(x, s′′, t) − φ(x, s′, t)

decreases with t; or (c) h is convex and for every x and s′′ > s′, φ(x, s′′, t)−φ(x, s′, t)

increases with t.

The proof of Proposition 4 is in the Appendix. Clearly, condition (i) implies that

∆ is a single crossing function of s, so the non-trivial part of this result consists of

showing that all the conditions together are sufficient to guarantee that {∆(·, t)}t∈T
form an S-summable family. Note that in the case where S and T are intervals and

φ is differentiable, the conditions on φ are simple to express: (i) is equivalent to

∂2φ/∂x∂s ≥ 0; a sufficient (though not necessary) condition for (ii) is ∂2φ/∂x∂t ≥ 0;

(iv) is equivalent to ∂φ/∂s ≥ 0 and ∂φ/∂t ≥ 0 and (v)-a, (v)-b, and (v)-c are

equivalent to ∂2φ/∂s∂t being equal, greater than, and smaller than 0 respectively.

We shall appeal to Proposition 4 in a number of applications, beginning with the

following comparative statics problem, which is seemingly basic but, as far as we

know, has not been solved with the level of generality permitted here.

Application 1: Comparative statics of a monopolist under uncertainty

Consider a monopolist that has to decide on its optimal output level x > 0. Its

profit function is Π(x; s) = xP (x)−C(x; s), where P is the inverse demand function

and C(·; s) is the cost function, parameterized by s in (S,≥). It is well-known that
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a decrease in marginal cost leads to a rise in the profit-maximizing output. To model

this formally, assume that the family {C(·; s)}s∈S obeys decreasing differences; if C

is differentiable, this is equivalent to marginal cost dC/dx decreasing with s. It

follows that {Π(·; s)}s∈S obeys increasing differences, so an application of Theorem 1

guarantees that the profit-maximizing output increases with s.

Now consider a more general setting where the firm faces uncertainty over the

demand for its output. We assume that the profit at state t ∈ T ⊂ R is given by

Π(x; s, t) = xP (x; t)− C(x; s) (9)

and that the firm maximizes V (x; s) =
∫
T
h (Π(x; s, t))λ(t) dt, where λ(t) is the sub-

jective probability of state t and h : R → R is the Bernoulli utility function rep-

resenting the monopolist’s attitude towards uncertainty. We would like to identify

conditions under which {V (·; s)}s∈S obeys single crossing differences, so that we could

guarantee that the optimal output level increases with s. For each t, the family

{Π(·; s)}s∈S obeys increasing differences if {C(·; s)}s∈S obeys decreasing differences;

it follows that {v(·; s, t)}s∈S, where v(·; s, t) = h(Π(·; s, t)), will obey single crossing

differences. To apply Theorem 2 to this problem we need to show that {∆(·, t)}t∈T
is an S-summable family, where

∆(s, t) = h(Π(x′′; s, t))− h(Π(x′, s, t)). (10)

The next result uses Proposition 4 to identify conditions under which this holds.

Proposition 5 Suppose that {Π(·; s, t)}(s,t)∈S×T is given by (9) and has the following

properties: (i) C is increasing x, decreasing in s, and {C(·; s)}s∈S obeys decreasing

differences, and (ii) P is decreasing in x and increasing in t and {lnP (·; t)}t∈T obeys

increasing differences. In addition, (iii) suppose that h : R→ R is twice differentiable,

with h′ > 0 and obeys DARA.

Then {∆(·; t)}t∈T (defined by (10)) is an S-summable family, {V (·; s)}s∈S obeys single

crossing differences, and argmaxx∈XV (x; s) increases with s.
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Remark on condition (ii): Assuming that P is differentiable, {lnP (·; t)}t∈T obeys

increasing differences if and only if for all x > 0 and t′′ > t′,

−P (x; t′′)
dx

dP
(x; t′′) ≤ −P (x; t′)

dx

dP
(x; t′).

In other words, condition (ii) says that in a high state, the market clearing price is

high and the price elasticity of demand is low. Note also that when P is decreasing

x and increasing in t, the assumption that {P (·; t)}t∈T obeys increasing differences is

stronger than the assumption that {lnP (·; t)}t∈T obeys increasing differences.

Remark on condition (iii): Like condition (iii) in Proposition 4), this does not require

h to be concave, i.e., the firm need not be risk averse and even if it were, the firm

need not face a concave maximization problem because Π need not be concave in x.

Proof: We need to check that Π and h satisfy the conditions of Proposition 4. It

is clear that with our assumptions, Π is increasing in (s, t) and that for any t, the

family {Π(·; s, t)}s∈S obeys increasing differences (since {C(·; s)}s∈S obeys decreasing

differences). Furthermore, for every x and s′′ > s′, Π(x; s′′, t)−Π(x; s′, t) = C(x; s′)−

C(x; s′′), which is independent of t (so version (a) of condition (v) in Proposition 4

is satisfied). It remains for us to show that, for any given s, the family {Π(·; s, t)}t∈T
obeys single crossing differences.7 Suppose x′′ > x′ and Π(x′′; s, t′) − Π(x′; s, t′) ≥

(> ) 0. Then x′′P (x′′; t′)− x′P (x′; t′) ≥ (>) 0 since C is increasing in x.

x′′P (x′′; t′)− x′P (x′; t′) =

[
x′′
P (x′′; t′)

P (x′; t′)
− x′

]
P (x′; t′)

≤
[
x′′
P (x′′; t′′)

P (x′; t′′)
− x′

]
P (x′; t′)

≤
[
x′′
P (x′′; t′)

P (x′; t′′)
− x′

]
P (x′; t′′)

= x′′P (x′′; t′′)− x′P (x′; t′′)

7The argument we use to show that {Π(·; s, t)}t∈T obeys single crossing differences is an adap-

tation of the one used by Amir (1996) to guarantee that reaction curves in the Cournot model are

downward sloping.
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The first inequality is true since {lnP (·; t)}t∈T obeys increasing differences. The

second inequality holds since P is increasing in t and the term in the square bracket

is nonnegative. We conclude that Π(x′′; s, t′′)− Π(x′; s, t′′) ≥ (>) 0. QED

Proposition 5 says that under mild assumptions, a firm that faces lower marginal

costs will increase output, even if it is operating under uncertainty. We may under-

stand this result in the following way. For any given s, the family {Π(·; s, t)}t∈T obeys

single crossing differences, which means that if output x′′ yields higher expected utility

than a lower output x′, then it must be the case that x′′ gives higher profit (and thus

utility) than x′ in the high states, and (possibly) lower profit than x′ in the low states.

Furthermore, a high state leads to high profit at any output level. If x′′ gives higher

utility than x′ in a state t̄, then it will continue to give higher utility after the fall in

marginal cost. However, the size of that gain will typically change and will depend

on the curvature of h; formally, the gain varies from h(Π(x′′; s∗, t)) − h(Π(x′; s∗, t))

to h(Π(x′′; s∗∗, t))− h(Π(x′; s∗∗, t)). While the utility gains and losses (of x′′ over x′)

at different states will change with the fall in marginal cost, the gains (which occur

at higher states and thus higher profit levels) will continue to outweigh the losses

provided h obeys DARA.

Special cases of Proposition 5 are known. Sandmo (1971) considered the behavior

of a price-taking firm under uncertainty, with the market price experiencing additive

shocks; in our notation, he assumed that P (x; t) = P̄ + t. The problem of changing

marginal cost was not considered in his paper, but he showed that an increase in P̄

leads to higher output if h obeys DARA (in other words, the firm has an upward

sloping supply curve). This result is a special case of ours since there is no formal

difference between a rise in the price of the good by (say) q and fall in its marginal

cost by q. Note also that, unlike Sandmo’s result, we do not require the concavity of

the optimization problem.

Milgrom (1994) did not specifically examine the question we posed but pointed

out that a large class of seemingly distinct comparative statics problems has the
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same solution because they all rely on the same Spence-Mirrlees condition. A spe-

cial case of our problem can indeed be solved by appealing to the Spence-Mirrlees

condition and checking this condition in turn provides another application of The-

orem 2. To see this, suppose P (x, t) = P̄ (x) + t (compared to Sandmo’s assump-

tion, P̄ may now depend on x but the shock remains additive); by Theorem 1 in

Milgrom (1994), argmaxx∈XV (x; s) increases s if Wx/Wy is increasing in s, where

W (x, y, s) =
∫
h(y + tx − C(x, s))λ(t)dt. We claim that this is guaranteed by the

assumptions of Proposition 5.

Suppose, Wx(x, y; s∗)/Wy(x, y; s∗) = α and consider the function F defined by

F (s) ≡
∫
h′(y + tx− C(x; s))[t− Cx(x; s)− α]λ(t)ds. (11)

Note that F (s∗) = 0. If F is an S function, then for s∗∗ > s∗, we obtain F (s∗∗) ≥ 0,

which may be re-written as Wx(x, y; s∗∗)/Wy(x, y; s∗∗) ≥ α, as required by Milgrom’s

theorem. It remains for us to show that F is an S function. Denoting the integrand

in (11) by f(s, t), it is clear that f(·, t) is an S function since marginal cost, Cx(x; s),

is decreasing in s. By Theorem 2, F is an S function if {f(·, t)}t∈T forms an S-

summable family. By directly checking (3), it is not hard to show that this is true if

h obeys DARA and C is increasing in s (we leave the details to the reader).

5. Integrable Single Crossing Property

In this section, we consider functions defined on the domain S, where S = Πn
i=1Si,

with Si a bounded and measurable subset of R. We endow S with the product order.

For any s ∈ S, we denote its subvector consisting of entries in K ⊂ N = {1, 2, ..., n}

by sK and write s as (sN\K , sK). The set consisting of the subvectors sK we denote

by SK , so S = SN\K × SK . For a function f defined on S, we denote its restriction

to the subvector sN\K , with sK held fixed at s′K , by f(·, s′K). A subset of N that

appears often in our exposition is N \ {k}; we denote this subset by Nk.
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We are interested in finding conditions on f : S → R which guarantee that

F : S1 → R, defined by

F (s1) =

∫
S2

∫
S3

...

∫
Sn

f(s1, s2, ..., sn−1, sn) ds2 ds3 ...dsn , (12)

is an S function. Notice that we have already found a solution to this problem in the

case where the domain of f is S1 × S2: if f is an S function, then so is its restriction

f(·, s2) (for any s2); provided the family {f(·, s2)}s2∈S2 is S-summable, we know from

Proposition 2 that (subject to some measurability conditions) the map from s1 to∫
S2
f(s1, s2) ds2 is also an S function.

More generally, Proposition 2 tells us that if {f(·, sn)}sn∈Sn is an S-summable

family, then

Fn(sNn) =

∫
Sn

f(sNn , sn) dsn (13)

is an S function. However, since {Fn(·, sn−1)}sn−1∈Sn−1 need not be an S-summable

family, the integral of Fn with respect to sn−1 need not be an S function and, by

extension, neither can we guarantee that F is an S function. For this property to

hold, we need conditions on f that guarantee the preservation of the S-summable

relation after each round of integration.

A function f : S → R has the j-integrable single crossing property if it has the

single crossing property and

f(·, s′′K) ∼ f(·, s′K) (14)

whenever s′′K > s′K , for every K ⊂ Nj. We refer to such a function as an Ij function.

Since f has the single crossing property, if f(s∗N\K , s
′′
K) and f(s∗N\K , s

′
K) have opposite

signs then it must be the case that the former is positive and the latter negative.

Therefore, the condition (14) is equivalent to checking that (see (3))

−
f(s∗N\K , s

′
K)

f(s∗N\K , s
′′
K)
≥ −

f(s∗∗N\K , s
′
K)

f(s∗∗N\K , s
′′
K)

whenever s∗∗N\K > s∗N\K . (15)

If f is an Ij function for every j ∈ N , then we shall refer to it as an I function. It is

certainly possible for a function to be an Ij function for some j without it being an I
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function. For example, suppose S = {(1, 1), (1, 2), (2, 1), (2, 2)} and let f(1, 1) = −1,

f(2, 1) = −2, f(1, 2) = 2, and f(2, 2) = 1. Then f is trivially an I2 function, but it

is not an I1 function because

−f(1, 1)

f(1, 2)
=

1

2
< −f(2, 1)

f(2, 2)
= 2.

It is straightforward to check that the function h given by h(s) = f(s)g(s) is an Ij
function if f is an Ij function and g is logsupermodular. In particular, any increasing

function is an I function, so if f is increasing and g is logsupermodular, then h is an

I function.

A useful feature of the logsupermodular property is that it holds if and only if

it holds “one dimension at a time”, i.e., a function g is logsupermodular if and only

if g(·, s′′K)/g(·, s′K) is increasing in the scalar sN\K whenever s′′K > s′K where K has

exactly n− 1 elements. The next result, which we prove in the Appendix, shows that

the same is true of the Ij property.

Proposition 6 Let f : S→ R be an S function. Then f is an I1 function if and only

if the following holds: f(·; s′′K) ∼ f(·; s′K) whenever s′′K > s′K, where K is a subset of

N with exactly n− 1 elements and s′1 = s′′1 if 1 ∈ K.

The main result of this section is the following theorem; note that part (ii) clearly

follows from (i).

Theorem 3 Let f : S → R be a bounded and measurable I1 function. Then (i)

Fn : SNn → R as defined by (13) is an I1 function and (ii) F : S1 → R as defined by

(12) is an S function.

The complete proof of this result is in the Appendix. The proof requires the

following lemma, which also conveys much of the intuition of the result.
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Lemma 1 Let f : S→ R be an I1 function and let s1
n and s2

n be elements of Sn. The

function Fn : SNn → R, defined by

Fn(sNn) = f(sNn , s
1
n) + f(sNn , s

2
n), (16)

is an I1 function.

Proof: Let K ⊂ Nn and suppose s′′K > s′K (with s′′1 = s′1 if 1 ∈ K). Suppose

Fn(s∗Nn\K , s
′′
K) > 0 and Fn(s∗Nn\K , s

′
K) < 0. We need to show that

−
Fn(s∗Nn\K , s

′
K)

Fn(s∗Nn\K , s
′′
K)
≥ −

Fn(s∗∗Nn\K , s
′
K)

Fn(s∗∗Nn\K , s
′′
K)

if s∗∗Nn\K > s∗Nn\K . (17)

Set the left hand side of (17) equal to Q and define φ as the map from sNn\K to

QFn(sNn\K , s
′′
K) + Fn(sNn\K , s

′
K). Using (16), we may write

φ(sNn\K) = Q[f(sNn\K , s
′′
K , s

1
n)+f(sNn\K , s

′′
K , s

2
n)]+[f(sNn\K , s

′
K , s

1
n)+f(sNn\K , s

′
K , s

2
n)].

(18)

By the definition of Q, we have φ(s∗Nn\K) = 0. Notice that since Fn is an S function,

Fn(s∗∗Nn\K , s
′′
K) > 0, so that (17) holds if φ(s∗∗Nn\K) ≥ 0. The latter is true if we can

construct two S functions A1 and A2 (of sNn\K) such that (i) φ(sNn\K) = A1(sNn\K)+

A2(sNn\K), (ii) A1(s∗Nn\K) = A2(s∗N\K) = 0, and (iii) A1 and A2 are S functions.

Since Fn(s∗Nn\K , s
′′
K) = f(s∗Nn\K , s

′′
K , s

1
n) + f(s∗Nn\K , s

′′
K , s

2
n) > 0 and f is an S

function, we must have f(s∗Nn\K , s
′′
K , s

2
n) > 0, while f(s∗Nn\K , s

′′
K , s

1
n) may be negative

(Case 1) or nonnegative (Case 2).

Case 1. Choose α ∈ (0, 1) so that A1 defined by

A1(sNn\K) = Qf(sNn\K , s
′′
K , s

1
n) + αQf(sNn\K , s

′′
K , s

2
n)

satisfies A1(s∗Nn\K) = 0. Define the function A2 by

A2(sNn\K) = (1− α)Qf(sNn\K , s
′′
K , s

2
n) + [f(sNn\K , s

′
K , s

1
n) + f(sNn\K , s

′
K , s

2
n)].

21



With these definitions, it is clear that (i) and (ii) are true (see (18)). Furthermore,

since f is an I1 function, A1 and A2 are both sums of S-summable functions (of

sNn\K) and are thus S functions, i.e. (iii) holds as well.8

Case 2. Assume, for now, that

Qf(s∗Nn\K , s
′′
K , s

2
n) + f(s∗Nn\K , s

′
K , s

2
n) ≥ 0. (19)

Since f(s∗Nn\K , s
′′
K , s

1
n) ≥ 0, Fn(s∗Nn\K , s

′
K) = f(s∗Nn\K , s

′
K , s

2
n) + f(s∗Nn\K , s

′
K , s

1
n) < 0,

and φ(s∗Nn\K) = 0, we know that there exists β ∈ [0, 1] such that the function A1

defined by

A1(sNn\K) = Qf(sNn\K , s
′′
K , s

2
n) + f(sNn\K , s

′
K , s

2
n) + βf(sNn\K , s

′
K , s

1
n)

satisfies A1(s∗Nn\K) = 0. Define the function A2 by

A2(sNn\K) = Qf(sNn\K , s
′′
K , s

1
n) + (1− β)f(sNn\K , s

′
K , s

1
n).

Clearly, (i) and (ii) holds by construction (see (18)). Lastly, (iii) holds because f is

an I1 function, so A1 and A2 are both sums of S-summable functions (of sNn\K).

It remains for us to show that (19) holds. Suppose it does not; since f(s∗Nn\K , s
′′
K , s

2
n) >

0, we must have f(s∗Nn\K , s
′
K , s

2
n) < 0. This in turn implies that f(s∗Nn\K , s

′
K , s

1
n) < 0

(because f is an S function) and hence f(s∗Nn\K , s
′′
K , s

1
n) > 0 (because φ(s∗Nn\K) = 0).

We also have

Q < −
f(s∗Nn\K , s

′
K , s

2
n)

f(s∗Nn\K , s
′′
K , s

2
n)
≤ −

f(s∗Nn\K , s
′
K , s

1
n)

f(s∗Nn\K , s
′′
K , s

1
n)
. (20)

The first inequality follows from the violation of (19). The second from the fact that

f(·; s∗Nn\K , s
′′
K) ∼ f(·; s∗Nn\K , s

′
K) and the numerator and denominator of the right-

most ratio are negative and positive respectively. Using (20) and the formula for φ

(see (18)), we obtain φ(s∗Nn\K) < 0, which is a contradiction. QED

8Note that the decomposition makes careful use of the I1 property of f to ensure that A1 and

A2 are sums of ∼-related functions.
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Theorem 3 is related to the well-known result that logsupermodularity is preserved

under integration (see Karlin and Rinott (1980)); for applications in economics see

Jewitt (1991), Gollier (2001) and Athey (2001, 2002)). This property is an easy

consequence of Theorem 3.

Corollary 2 Let Xi (for i = 1, 2, ...,m) and Yj (for j = 1, 2, ..., n) be measurable

subsets of R and suppose that the function φ : X × Y → R (where X = Πm
i=1Xi and

Y = Πn
j=1Yj) is uniformly bounded and measurable with respect to y ∈ Y . If φ is

logsupermodular in (x, y), then the function Φ, defined by Φ(x) =
∫
Y
φ(x, y)dy is also

a logsupermodular function.

Proof: Let K ⊂M = {1, 2, ...m}, and suppose a′′ > a′, for a′′ and a′ in Πi∈KXi. Let

b∗∗ > b∗ be two vectors in Πi∈M\KXi. Suppose Φ(b∗, a′′) = QΦ(b∗, a′). This means

that ∫
Y

[φ(b∗, a′′, y)−Qφ(b∗, a′, y)] dy = 0. (21)

Define the function G : Πi∈M\KXi → R by G(b) =
∫
Y

[φ(b, a′′, y)−Qφ(b, a′, y)] dy.

Note that the integrand may be written as[
φ(b, a′′, y)

φ(b, a′, y)
−Q

]
φ(b, a′, y).

The term in the square brackets is increasing in (b, y) (because φ is logsupermodular);

so the integrand is the product of an increasing function of (b, y) and a logsupermod-

ular function of (b, y). Therefore, it is an I function and Theorem 3 guarantees that

G is an S function. Since G(b∗) = 0 (by (21)), we obtain G(b∗∗) ≥ 0. The latter is

equivalent to
Φ(b∗∗, a′′)

Φ(b∗∗, a′)
≥ Q =

Φ(b∗, a′′)

Φ(b∗, a′)
,

which establishes the logsupermodularity of Φ. QED

We now present two technical results, both of which are useful in Section 7, where

we establish the monotonicity of bidding strategies in first-price auctions. The first
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result is a generalization of Theorem 2(ii).

Proposition 7 Let f : S→ R be a bounded and measurable I1 function and suppose

that g ∼ f(·; s′N1
) for every s′N1

∈ SN1, where g : S1 → R is an S function. Then

g ∼ F , where F is defined by (12).

We pointed out in Section 3 that the single crossing property was preserved after

domain coarsening. This feature is also true of the integrable single crossing property.

Given an element ŝn in the interior of Sn = [sn, s̄n], we define the function F̄n :

SNn × {0, 1} → R by

F̄n(sNn , sn) =


∫

[sn,ŝn]
f(sNn , zn)dzn if sn = 0∫

(ŝn,s̄n]
f(sNn , zn)dzn if sn = 1

(22)

Proposition 8 (stated below and proved in the Appendix) says that F̄n is an I1

function. Carrying this observation further, let ŝi be an element in the interior of the

closed interval Si, for i = 2, 3, ..., n and define the function F̄ : S1×{0, 1}n−1 → R by

F̄ (s1, s2, .., sn) =

∫
S′2

∫
S′3
...

∫
S′n
f(s1, z2, ..., zn−1, zn) dz2 dz3 ...dzn where (23)

S ′i =

 [si, ŝi] if si = 0 and

(ŝi, s̄i] if si = 1.
(24)

The function F̄ is also an I1 function if f is an I1 function.

Proposition 8 Let f : S = [si, s̄i]
n → R be a bounded and measurable I1 function.

Then F̄n (as defined by (22)) and F̄ (as defined by (23) and (24)) are also I1 functions.

6. Monotone decision rules

In this section, we consider the application of Theorem 3 to an important class

of optimization problems, first raised in our discussion of Problem 2 (in Section 2).
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Consider an agent operating under uncertainty who chooses an action x (in X ⊂ R)

to maximize his expected utility, given by

V1(x; s1) =

∫
SN1

v1(x; s1, s2, ..., sn)λ(sN1|s1)dsN1 . (25)

The agent’s realized utility, v1(x; s1, s2, ..., sn) depends on some variable s1 observed

by the agent and also on other unobserved state variables (s2, s3, ..., sn). Assume that

Si is a compact interval. If this agent is making a decision in the context of a Bayesian

game, sj (for j ∈ N1) may be a signal observed by the jth player but not this agent.

The distribution of sN1 conditional on observing s1 is given by the density λ(sN1 |s1).

Suppose that the random variables {si}i∈N are affiliated in the sense that the

joint distribution of (s1, s2, ..., sn) admits a logsupermodular density function λ. It

is straightforward to show that the density function of the conditional distribution,

i.e., λ(sN1|s1), is also logsupermodular in (s1, s2, ..., sn). Suppose, in addition, that

for any two actions x′′ > x′,

∆(s) = v1(x′′; s)− v1(x′; s) (26)

is an I1 function. Then Theorem 3 guarantees V1(x′′; ·)−V1(x′; ·) is an S function; in

other words, the family {V1(·; s)}s1∈S1 obeys single crossing differences. This in turn

guarantees that the agent’s optimal action increases with the signal he receives (by

Theorem 1). The next result states these observations formally.

Theorem 4 Suppose that λ(·|·) is logsupermodular and, for any x′′ > x′, ∆ (as

defined by (26)) is an I1 function. Then {V1(·; s1)}s1∈S1 (with V1 defined by (25))

obeys single crossing differences and argmaxx∈XV1(x; s1) increases with s1.

As an easy application of Theorem 4, suppose v1 is a logsupermodular function

(of (x; s)). For any x′′ > x′, we have

∆(s) =

[
v1(x′′; s)

v1(x′; s)
− 1

]
v1(x′; s).
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We see that ∆ is the product of an increasing function (the term in the square brackets,

which is increasing in s because v1 is logsupermodular) and the logsupermodular

function v1(x′; ·). Thus ∆ is an I1 (in fact, an I) function and we conclude that

{V1(·; s1)}s1∈S1 obeys single crossing differences. So we recover the well-known result

that argmaxx∈XV1(x; s1) increases with s1 when v1 is logsupermodular.9 Of course,

the power of Theorem 4 lies precisely in the fact that it gives a way of guaranteeing

monotonic decision rules even when v1 is not necessarily logsupermodular, as is the

case in the applications at the end of this section.

The conditions in Theorem 4 are tight in the following sense: if we wish to guaran-

tee that {V1(·; s)}s1∈S1 is a single crossing family whenever λ(·|·) is logsupermodular

then (subject to some mild regularity conditions) it is necessary that ∆ be an I1

function. The next result makes the role of the I1 property transparent.

Proposition 9 (i) Suppose that for every x′′ > x′, ∆ (as defined by (26)) is an I1

function. Then v1 has the following property: (?) for any α ∈ [0, 1], s∗∗1 > s∗1 in S1,

vectors a∗∗ ≥ a∗ in SK with K ⊂ N1, and b∗∗ ≥ b∗ in SN1\K,

αv1(x′′; s∗1, b
∗, a∗)+(1−α)v1(x′′; s∗1, b

∗, a∗∗) ≥ (>)αv1(x′; s∗1, b
∗, a∗)+(1−α)v1(x′; s∗1, b

∗, a∗∗)

(27)

=⇒

αv1(x′′; s∗∗1 , b
∗∗, a∗)+(1−α)v1(x′′; s∗∗1 , b

∗∗, a∗∗) ≥ (>)αv1(x′; s∗∗1 , b
∗∗, a∗)+(1−α)v1(x′; s∗∗1 , b

∗∗, a∗∗).

(28)

(ii) Suppose v1 is continuous in s1 and that, for some x′′ > x′, ∆ is not an I1 function

on the restricted domain (Int S1)× SN1. Then v1 violates (?).

The inequalities (27) and (28) require some explanation. The left (right) hand side

of (27) is the expected utility of action x′′ (x′) if, after observing s∗1, the agent places

a probability of α on (s∗1, b
∗, a∗) and 1− α on (s∗1, b

∗, a∗∗). The left and right of (28)

9For applications of this result in Bayesian games, see Athey (2001).
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compares the expected utility of x′′ and x′ if, after observing the signal s∗∗1 (which is

strictly higher than s∗1), the agent places a probability of α on (s∗∗1 , b
∗∗, a∗) and (1−α)

on (s∗∗1 , b
∗∗, a∗∗). Since (s∗∗1 , b

∗∗, a∗) > (s∗1, b
∗, a∗) and (s∗∗1 , b

∗∗, a∗∗) > (s∗1, b
∗, a∗∗)), a

higher signal leads to an upward revision of beliefs. Whenever the agent’s posterior

beliefs vary with the signal s1 is this way, property (?) requires that if x′′ is preferred

to x′ at signal s∗1, then the preference will remain at the higher signal s∗∗1 . Proposition

9 says that property (?) holds if and only if ∆ is an I1 function. In particular, if ∆

is not an I1 function, then there is an instance where the preference of x′′ over x′ is

reversed when the agent’s signal is raised from s∗1 to s∗∗1 .

Proof of Proposition 9: (i) In the case where a∗ = a∗∗, property (?) follows

from the our assumption that ∆ is an S function. So assume that a∗∗ > a∗. The

inequality (27) may be re-written as α∆(s∗1, b
∗, a∗) + (1 − α)∆(s∗1, b

∗, a∗∗) ≥ (>) 0.

Since ∆(·, a∗) ∼ ∆(·, a∗∗), we obtain α∆(s∗∗1 , b
∗∗, a∗) + (1 − α)∆(s∗∗1 , b

∗∗, a∗∗) ≥ (>)0

(by Proposition 1), which is (28).

(ii) Suppose that for some x′′ > x′, ∆ is not an S function. Then there is s∗∗ > s∗

such that either (a) ∆(s∗) ≥ 0 but ∆(s∗∗) < 0 or (b) ∆(s∗) > 0 and ∆(s∗∗) = 0. Since

∆ is continuous in s1 and s∗∗1 and s∗1 are in the interior of S1, we may assume that

s∗∗1 > s∗1 (in other words, we may exclude the case where s∗∗1 = s∗1). Setting K = ∅,

α = 1, b∗ = s∗N1
and b∗∗ = s∗∗N1

, it is clear that we have a violation of property (?).

Assume now that ∆ is an S function, but it is not an I1 function because for

some a∗∗ > a∗, with a∗ and a∗∗ in SK and K ⊂ N1, the S functions ∆(·, a∗∗) and

∆(·, a∗) are not ∼-related. By Proposition 1, there is α̂ such that α̂∆(·, a∗∗) + (1 −

α̂)∆(·, a∗) is not an S function. This means that there is (s∗∗1 , b
∗∗) > (s∗1, b

∗), with

b∗∗ and b∗ in SN̂\K such that, either (a′) α̂∆(s∗1, b
∗, a∗∗) + (1 − α̂)∆(s∗1, b

∗, a∗) ≥

0 but α̂∆(s∗∗1 , b
∗∗, a∗∗) + (1 − α̂)∆(s∗∗1 , b

∗∗, a∗) < 0 or (b′) α̂∆(s∗1, b
∗, a∗∗) + (1 −

α̂)∆(s∗1, b
∗, a∗) > 0 but α̂∆(s∗∗1 , b

∗∗, a∗∗)+(1−α̂)∆(s∗∗1 , b
∗∗, a∗) = 0. Note that because

s∗1 and s∗∗1 are in the interior of S1 and ∆ is continuous in s1, we can always guarantee

that s∗∗1 > s∗1. Either (a′) or (b′) is equivalent to violation of (?). QED
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We end this section with two applications of Theorem 4.

Extension of Application 1.

Suppose the monopolist has to make its output decision when both demand and

cost conditions are not fully known; we also allow the monopolist to have an additional

and stochastic source of income, which we denote by b (drawn from the set B in R).

The monopolist observes a signal k in K ⊂ R; the joint distribution of (b, s, t) given k is

given by the density function µ(·|k). We assume that µ((b, s, t)|k) is logsupermodular

in (b, s, t, k)). Loosely speaking, this says that a high signal makes higher realizations

of b, s, and t more likely. After observing k, the monopolist chooses x to maximize

V (x; k) =

∫
B×T×S

h (Π(x; s, t) + b)µ ((b, s, t)|k) db ds dt. (29)

The next result identifies conditions under which the monopolist’s optimal output

choice increases with the signal received.

Proposition 10 Suppose that {Π(·; s, t)}(s,t)∈S×T is given by (9) and has the follow-

ing properties: (i) C is increasing x, decreasing in s, and {C(·; s)}s∈S obeys decreasing

differences, and (ii) P is decreasing in x and increasing in t and {P (·; t)}t∈T obeys

increasing differences. In addition, (iii) suppose that h : R → R is twice differen-

tiable, with h′ > 0 and obeys DARA and that (iv) µ(·|·) is a logsupermodular func-

tion. Then {V (·; k)}k∈K (as defined by (29)) obeys single crossing differences, and

argmaxx∈XV (x; k) increases with k.

Proof: Notice that the monopolist’s realized income at output x, Π(x; s, t) + b, is

increasing in (b, s, t). Notice also that condition (iii) in this proposition coincides with

condition (iii) in Proposition 5, while condition (ii) in this proposition is stronger than

(ii) in Proposition 5.10 Given this strengthening, in addition to {Π(·; s, t)}s∈S obeying

10See remark following Proposition 5.
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increasing differences (for any given t), we also have {Π(·; s, t)}t∈T obeying increas-

ing differences (for any given s). Proposition 5 tells us that {∆(·, t)}t∈T (defined

by (10)) is an S-summable family; given our strengthened assumptions, the same

argument we made there will guarantee that {∆(s, ·)}s∈S is an S-summable family.

These properties, along with condition (iv), guarantee that the map from (b, s, t, k) to

∆(s, t)µ((b, s, t)|k) is an I function. So it follows from Theorem 4 that {V (·; k)}k∈K

obeys single crossing differences and argmaxx∈XV (x; k) increases with k. QED

Application 2: Bertrand oligopoly with differentiated products

Consider a Bertrand oligopoly with n firms, each selling a single differentiated

product. We focus our discussion on firm 1 (the situation of the other firms being

analogous). Firm 1 has a constant unit cost of production of c1; the demand for

its output if it charges price p1 and the other firms charge pN1 (for their respective

products) is given by D1(p1, pN1 ; s1), where s1 is some parameter affecting demand

that is observed by firm 1. In general, firm j observes sj but not sk for k 6= j. At

the price vector p = (p1, pN1) and the parameter s1, firm 1’s profit is Π1(p1, pN1 ; s1) =

(p1− c1)D1(p1, pN1 ; s1). Suppose that firm j 6= 1 charges the price ψj(sj) whenever it

observes sj. If so, Firm 1 chooses p1 to maximize its expected utility

V1(p1; s1) =

∫
SN1

h1(Π1(p1, [ψj(sj)]j∈N1 ; s1)λ(sN1|s1) dsN1 ,

where h1 is the firm’s Bernoulli utility function and λ(·|s1) is the distribution of sN1 ,

conditional on observing s1.

We would like to find conditions under which there exists a Bayesian Nash equilib-

rium to this game. We know from Athey (2001) that (subject to some mild regularity

conditions) a Bayesian Nash equilibrium (with equilibrium decision rules that are in-

creasing in the signal) exists if each firm has an optimal decision rule that is increasing,
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given that all other firms are playing increasing decision rules.11 Therefore we are

interested in the primitive conditions under which argmaxp1>c1V1(p1; s1) is increasing

in s1, given that ψj are increasing functions.

To address this issue, consider in the first instance the case where the agent is

risk neutral, so h1 is the identity function. Suppose that D1 is a logsupermodular

function of (p1, pN1 ; s1). This condition has a very simple interpretation in terms of

the elasticity of demand. Define

εi(p; s1) =
pi

D1(p; s1)

∂D1

∂pi
(p; s1) ;

the logsupermodularity of D1 is equivalent to εi being increasing in s1 and in pk for

k 6= i. It is straightforward to check that if D1 is (i) increasing in pN1 (so an increase

in the price charged by firm k 6= 1 raises the demand for firm 1’s product), (ii)

logsupermodular, and (iii) ψj is increasing for all j ≥ 2, then Π1(p1, [ψj(sj)]j∈N1 ; s1)

is logsupermodular in (p1; s). If, in addition, λ(·|·) is logsupermodular, then V1 is

logsupermodular in (p1; s1) and so we conclude that argmaxp1>c1V1(p1; s1) increasing

in s1. This result is generalized in the next proposition, which uses Proposition 4 and

Theorem 4 to consider the case where the firm is not necessarily risk neutral.

Proposition 11 Suppose that ψj is increasing for all j ∈ N1, λ(·|·) is logsupermodu-

lar, and D1 is increasing pN1 and in s1, with ε1 increasing in s1 and in pk for all k 6= i.

Then argmaxp1>c1V1(p1; s1) is increasing in s1 if any of the following conditions hold:

(A) h1(z) = ln z, i.e., the coefficient of relative risk aversion is identically 1;

(B) the coefficient of relative risk aversion is bounded above by 1 and is decreasing

and, for i 6= 1, εi is increasing in s1 and in pk for all k 6= {i, 1};

(C) the coefficient of relative risk aversion is bounded below by 1 and is decreasing

and, for i 6= 1, εi is decreasing in s1 and in pk for all k 6= {i, 1}.12

11For generalizations of Athey’s work, see McAdams (2003), Van Zandt and Vives (2007), and

Reny (2009).
12The conditions on ε1, together with the (B) conditions on εi, for i 6= 1, are equivalent to the
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Proof: We may write h1(Π1(p1, (ψj(sj))j∈N1 ; s1)) as h̃1(π̃(p1; s)) where h̃1(·) = h1(exp(·))

and π̃(p1; s) = ln Π1(p1, (ψj(sj))j∈N1 ; s1). For any p′′1 > p′1 we define ∆ by ∆(s) =

h̃(π̃(p′′1; s))− h̃(π̃(p′1; s)). By Theorem 4, we need only show that ∆ is an I function.

Note that the conditions (in particular the conditions on ε1) guarantee the property

(p1): π̃(p′′1; s) − π̃(p′1; s) is increasing in s. We also have the property (p2): π̃ is

increasing in s = (sN\K , sK).

Case (A) is the easiest of the three cases. We have ∆(s) = π̃(p′′1; s)− π̃(p′1; s), so

∆ is certainly as I function since it is an increasing function (by (p1)). For cases (B)

and (C), we first note that (p1) guarantees that ∆ is an S function. To confirm that

∆ is an I function, we need to check that

∆(·, s′′K) ∼ ∆(·, s′K). (30)

where K ⊂ N and s′′K > s′K . This can be obtain via Proposition 4 (with T =

{s′′K , s′K}). Consider the assumptions under case (B). Those assumptions guarantee

property (p3): for any p1, π̃(p1; s∗∗N\K , sK) − π̃(p1; s∗N\K , sK) is increasing in sK , for

any s∗∗N\K > s∗N\K ; they also guarantee (p4): h̃ is a convex function with DARA.

Properties (p1), (p2), (p3), and (p4) together ensure that conditions (i), (ii), (iii),

(iv), and (v-c) in Proposition 4 are satisfied. We conclude that (30) holds.

The assumptions of case (C) guarantee property (p3′): for any p1, π̃(p1; s∗∗N\K , sK)−

π̃(p1; s∗N\K , sK) is decreasing in sK , for any s∗∗N\K > s∗N\K ; they also guarantee prop-

erty (p4′): h̃ is concave with DARA. [Note the contrast between (p3) and (p3′) and

between (p4) and (p4′).] In this case, conditions (i), (ii), (iii), (iv), and (v-b) in

Proposition 4 are satisfied and we obtain (30). QED

logsupermodularity of D1. Note also that if h is linear then the coefficient of relative risk aversion

equals 0, so the case we discussed just before stating this proposition is covered under (B).

31



7. Equilibrium existence in first price auctions

Consider a first-price auction with n bidders forming the set N . Before making

his bid, bidder i ∈ N receives a private signal si in Si = [0, 1]. The signals s =

(s1, s2, ..., sn) have a joint distribution governed by the density function λ. Bidder i

submits a sealed bid from Bi = {`} ∪ [ri,∞), where ` < ri. The bidder submitting

the highest bid wins the object, with ties broken uniformly and randomly. The bid `

should be interpreted as a decision not to participate in the auction; its payoff to the

bidder is normalized at 0, irrespective of the signal. Bidder i faces a reserve price of

ri and if he makes a serious bid b, i.e., a bid b ≥ ri, then his payoff upon winning the

object is ui(b; s). We say that ui is regular if it is measurable in (b; s), bounded in s

for any given b, continuous in b for any given s, there is b̃i such that ui(b; s) < 0 for

all s if b > b̃i, and ui(`; s) = 0 for all s. Note that b̃i constitutes a bid that is so high

that bidder i’s payoff is always negative, no matter what state s is realized.

At the interim stage, when the i has observed his signal but not that of the other

bidders, he decides on his bid by maximizing expected utility. Bidder i’s bidding

strategy is a map from Si to Bi. We prove the following equilibrium existence result.

Theorem 5 A Bayesian-Nash equilibrium with increasing bidding strategies exists

when λ is strictly positive in [0, 1]n and logsupermodular and when each bidder i has

a regular payoff function ui : Bi× [0, 1]n → R that also obeys the following conditions:

(a) for any serious bid b, ui(b; s) is increasing in s and strictly increasing in si;

(b) for any serious bids b′′ > b′, ui(b
′′; s) < ui(b

′; s) for all s; and

(c) for any serious bids b′′ > b′, ui(b
′′; ·, s′K) − ui(b′; ·, s′K) ∼ ui(b

′′; ·, s′′K) where K ⊂

{1, 2, ..., n} \ {i} and s′′K > s′K.

Remark: Condition (b) implies that ui(b
′′; ·, s′K) − ui(b

′; ·, s′K) < 0, so (c) could be

equivalently stated as the following: for any serious bids b′′ > b′, ui(b
′′; ·, s′K) −

ui(b
′; ·, s′K) � ui(b

′′; ·, s′′K) where K ⊂ {1, 2, ..., n} \ {i} and s′′K > s′K.
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Our result is closely related to Reny and Zamir (2004); the main result in their

paper (Theorem 2.1) has precisely the same setup and conclusion as Theorem 5,

except that instead of conditions (a), (b) and (c), they require (a) and the following

condition: (RZ) for any serious bids b′′ > b′, ui(b
′′; s)−ui(b′; s) is increasing in s. To

compare the two sets of conditions, first note that (unlike us) Reny and Zamir do not

require the bidders payoff to decrease with his bid, i.e., they do not impose condition

(b). However, if we assume that (b) is satisfied – and this condition seems innocuous

– then (RZ) and (a) clearly imply (c), since both ui(b
′′; s)− ui(b′; s) and ui(b

′; s) will

then be increasing in s. In other words, within the class of payoff functions which

are decreasing in the bid, our conditions are more general than those in Reny and

Zamir (2004). We give two examples to show that our modification of the conditions

in Reny and Zamir is significant.

Example 1. Suppose that ui(b; s) = ui(si − b); this case was considered by Athey

(2001) who showed that an equilibrium in increasing bidding strategies exists if ui is

log-concave. Note that the log-concavity of ui does not imply that ui(s−b′′)−ui(s−b′)

is increasing in s; indeed, the latter is equivalent to the concavity of ui. However,

Athey’s condition does imply that (c) is satisfied, since (c) requires

ui(si − b′)− ui(si − b′′)
ui(si − b′′)

=
ui(si − b′)
ui(si − b′′)

− 1

to be decreasing in si, which is true if and only if ui is log-concave.

Example 2. Loosely speaking, condition RZ says that as the state s becomes

higher (and thus more favorable), the payoff difference between one bid and another

that is lower becomes less significant. This property is violated in those situations

where making a higher bid imposes an opportunity cost to the bidder which is higher

when the state is more favorable. Consider the case where ui(b; s) = (Yi−b)φi(s)−Yi.

We interpret Yi > 0 as the agent’s overall budget for a project, of which b is spent on

acquiring the licence to run the project. The part of the budget left for the successful

bidder’s operations is Yi − b, from which he derives revenue of (Yi − b)φi(s). The
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net payoff to bidder i is thus given by ui(b; s). In this case, ui(b
′′, s) − ui(b

′, s) =

(b′ − b′′)φi(s), which is decreasing in s if φi is increasing in s, thus violating RZ.

On the other hand, condition (c) holds so long as φ is logsupermodular and in-

creasing in s. Indeed,

−
u1(b′′; sN\K , s

′
K)− u1(b′; sN\K , s

′
K)

u1(b′′; sN\K , s′′K)
=

(b′′ − b′)φ(sN\K , s
′
K)

(Y1 − b′′)φ(sN\K , s′′K)− Y1

=
b′′ − b′[

(Y1 − b′′)
φ(sN\K ,s

′′
K)

φ(sN\K ,s
′
K)
− Y1

φ(sN\K ,s
′
K)

] ,
which is decreasing in sN\K (when b′′ > b′ and s′′K > s′K) if φ is logsupermodular and

increasing in s.

Proof of Theorem 5: The overall structure of our proof is identical to that of Reny

and Zamir’s proof of Theorem 2.1 in their paper and has two components.

[A] For all bidders i, let B′i be a subset of Bi, with the property that for i 6=

j, B′i ∩ B′j = {`}. We refer to {B′i}1≤i≤n as a set of nonintersecting bid spaces.

We claim that any first price auction has a Bayesian-Nash equilibrium in increasing

bidding strategies whenever the conditions of Theorem 5 are satisfied and the players

are required to bid from a set of non-intersecting bid spaces. This claim follows

immediately from Athey’s (2001) equilibrium existence theorem, provided we can

show that when all other bidders play an increasing bidding rule, then player k’s

optimal bid is increasing in the signal he receives.

To be precise (and focussing first on player 1), suppose bidder i (for i 6= 1) is

playing the increasing strategy b̄i : Si → Bi and denote the payoff of player 1 if he

bids b after observing s1 and when player i (for i 6= 1) is playing the strategy b̄i, by

V1(b; s1). It suffices for us to show the following property:

(?) when B′1 ⊂ B1 is such that B′1 ∩ Range(b̄i) = {l} for all i 6= 1 then whenever

s∗∗1 > s∗1 we have

argmaxb∈B′1V1(b; s∗∗1 ) ≥ argmaxb∈B′1V1(b; s∗1). (31)
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In other words, if we confine bidder 1’s bid space so that his bid never ties with that

from another bidder, then his optimal bid must increase with the signal he receives.

[B] Assuming for now that (?) holds, a Bayesian-Nash equilibrium in increas-

ing bidding strategies exists whenever the bidders are required to bid from a set

of non-intersecting bid spaces. Reny and Zamir show that this property, together

with condition (a) guarantee the following: there exists a sequence of nonintersecting

bid spaces {Bn
i }i∈N , each with a Bayesian-Nash equilibrium in increasing strategies

{b̃ni }i∈N such that, for every i, the function b̃ni : Si → Bn
i has a limit b̂i : Si → Bi and

{b̂i}i∈N form a Bayesian-Nash equilibrium of increasing strategies of the first price

auction (with the original bid spaces). QED

It remains for us to prove (?). Note firstly that it really is necessary to exclude

bids that tie with other bidders; (31) is not generally true if we set B′1 = B1 (see Reny

and Zamir (2004)). It follows from Theorem 1 that (?) holds if we can show that the

collection of expected payoff functions {V1(·; s1)}s1∈S1 (when restricted to the domain

B′1) obeys single crossing differences. However, Reny and Zamir show that this too is

not generally true. To prove (?), Reny and Zamir establish a weaker form of single

crossing differences that is nonetheless sufficient to guarantee (31). Following them,

we say that the family {V1(·; s1)}s1∈S1 obeys individually rational and tieless (IRT)

single crossing differences if for any b′′ and b′ with b′′ > b′ ≥ r1 such that

Pr(b̄i(si) = b′) = Pr(b̄i(si) = b′′) = 0 for all i 6= 1, (32)

the following condition is satisfied: if V1(b′′; s∗1) ≥ 0, and s∗∗1 > s∗1, then

V1(b′′; s∗1)− V1(b′; s∗1) ≥ (>) 0 =⇒ V1(b′′; s∗∗1 )− V1(b′; s∗∗1 ) ≥ (>) 0 (33)

This property is weaker than single crossing differences because of the added require-

ment that V1(b′′; s∗1) ≥ 0. Nonetheless, it is straightforward to show that it is sufficient

to guarantee (31). The reason for this is because every bidder can choose to opt out
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(formally, by taking action `), so that V1(b′′; s∗1) ≥ 0 is an individual rationality condi-

tion that is always satisfied at any serious optimal bid.13 The next result establishes

IRT single crossing differences and thus (?).

Proposition 12 Suppose λ is strictly positive in [0, 1]n and logsupermodular and

bidder 1 has a regular payoff function u1 : B1 × [0, 1]n → R that obeys the following:

(a′) for any serious bid b, u1(b; s) is an I1 function of s;

(b) for any serious bids b′′ > b′, u1(b′′; s) < u1(b′; s) for all s; and

(c) for any serious bids b′′ > b′, u1(b′′; ·, s′K)−u1(b′; ·, s′K) ∼ u1(b′′; ·, s′′K) where K ⊆ N1

and s′′K > s′K.

Then the family {V1(·; s1)}s1∈S1 obeys IRT single crossing differences.

Remark 1: Note that condition (a′) in this proposition is weaker than (a) in Theorem

5. While (a) is not needed in the proof of Proposition 12 it is used by Reny and Zamir

in the limiting argument (see part [B] of our proof of Theorem 5).

Remark 2: Proposition 2.3 in Reny and Zamir (2004) has the same conclusion as

Proposition 12, but instead of assuming (a’), (b), and (c), it assumes conditions (a)

(as described in our Theorem 5) and condition RZ on u1.

Proof of Proposition 12: We shall sketch out the broad outline of the proof here,

leaving the details to the Appendix. Let b′′ be a bid from player 1 and suppose that

it obeys (32). Define s̄i = sup{si ∈ Si : b̄i(si) < b′′}. Since b̄i is increasing, for si < s̄i

(si > s̄i), we have b̄i(si) ≤ b′′ (b̄i(si) ≥ b′′). Since ties occur with probability zero, and

λ is nonzero, we obtain something stronger: si < s̄i (si > s̄i) implies that b̄i(si) < b′′

(b̄i(si) > b′′). Therefore, player 1 wins the object for certain if player i’s realized

signal is strictly below s̄i and whenever player i receives a signal strictly above s̄i,

13In effect, Reny and Zamir are exploiting the fact that single crossing differences is not a necessary

condition for comparative statics when the constraint set has more than two elements. The interval

dominance order studied in Quah and Strulovici (2009) is a weakening of single crossing differences

that also exploits this fact.
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player 1 will lose. So player 1’s expected utility with bid b′′ if he receives signal s1 is

V1(b′′; s1) =

∫ s̄2

0

∫ s̄3

0

...

∫ s̄n

0

u1(b′′; s1, sN\1)λ(sN\1|s1) ds2 ds3 ...dsn (34)

Let b′ be another possible bid from player 1, with b′′ > b′. Since V1(b′′; ·) is an S

function, if V1(b′′; s∗1) ≥ (>) 0 we also have V1(b′′; s∗∗1 ) ≥ (>) 0. Thus (33) must be

true if V1(b′; s∗∗) < 0, if b′ = ` or, more generally, if b′ is such that b′ is a highest

bid with probability zero (whereupon V1(b′; s∗1) = V1(b′; s∗∗1 ) = 0); (33). So we can

concentrate on establishing (33) in the case where V1(b′′; s∗1) ≥ 0, V1(b′; s∗∗) ≥ 0, and

b′ > `, with b′ being a highest bid with positive probability. Thus, ŝi > 0, where ŝi

is the signal such that for all si < ŝi, b̄i(si) < b′ and for all si > ŝi, b̄i(si) > b′. It is

clear that ŝi ≤ s̄i.

We define the function ∆ by ∆(s1) = V1(b′′, s1)− V1(b′, s1); therefore

∆(s1) =

∫ s̄2

0

∫ s̄3

0

...

∫ s̄n

0

δ(s1, sN1) ds2 ds3 ...dsn

where δ : [0, 1]× [0, s̄2]× ....× [0, s̄n]→ R is given by

δ(s) =

 [u1(b′′; s1, sN1)− u1(b′; s1, sN1)]λ(sN1|s1) if si ≤ ŝi for i = 2, 3, ..., n

u1(b′′; s1, sN1)λ(sN1|s1) otherwise

(35)

Clearly, the problem of showing (33) can be re-cast as showing

∆(s∗1) ≥ (>)0 =⇒ ∆(s∗∗1 ) ≥ (>)0. (36)

We define the function δ̄ : S1 × {0, 1}n−1 → R by

δ̄(s1, a2, .., an) =

∫
S′2

∫
S′3
...

∫
S′n
δ(s1, sN1) ds2 ds3 ...dsn where (37)

S ′i =

 [0, ŝi] if ai = 0 and

(ŝi, s̄i] if ai = 1.
(38)

We may think of a typical element (a2, a3, ..., an) in {0, 1}n−1 as representing a partic-

ular subset of Πn−1
i=1 [0, s̄i]. Reny and Zamir (2004) refer to these subsets as cells). The
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collection {(a2, a3, ..., an) : ai = 0, 1} = {0, 1}n−1 represents a partition of Πn
i=1[0, s̄i]

and the function δ̄ gives the integral of δ over each cell. To simplify our notation,

from this point on, we shall denote the vector (a2, a3, ..., an) by a. Observe that∑
a∈{0,1}n−1

δ̄(s1, a) = ∆(s1). (39)

The function ū1(b′′; ·) : S1 × {0, 1}n−1 → R is defined in a similar way to δ̄, but

with δ(s1, sN1) (in 37) replaced with u1(b′′; s1, sN1)λ(sN1|s1). Note that

δ̄(s1, a) = ū1(b′′, s1, a) for a > 0 and (40)

δ̄(s1, 0) = ū1(b′′; s1, 0)− V1(b′; s1) (41)

Condition (b) guarantees that δ̄(s1, 0) < 0. Like u1(b′′; ·), ū1(b′′; ·) is an I1 function

(by Proposition 8); we also have∑
a∈{0,1}n−1

ū1(b′′; s1, a) = V (b′′; s1). (42)

We divide the proof of (36) into two cases: (I) V1(b′; s∗1) ≥ 0; and (II) V1(b′; s∗1) < 0.

For case (I), we show in the Appendix that δ̄ : {s∗1, s∗∗1 } × {0, 1}n−1 → R is an I1

function.14 Provided this is true, (39) and Theorem 3 together guarantee (36).

For case (II), we define the function δ̃ : {s∗1, s∗∗1 } × {0, 1}n−1 → R by

δ̃(s∗1, a) = ū1(b′′; s∗1, a) for a ∈ {0, 1}n−1 and (43)

δ̃(s∗∗1 , a) =

 δ̄(s∗∗1 , 0)− ε if a = 0 and

δ̄(s∗∗1 , a) if a > 0.
(44)

We show in the Appendix that for positive and sufficiently small ε, δ̃ is an I1 function.

This in turn leads to (36). Indeed, because V1(b′′; s∗1) ≥ 0, it follows from (42) and

(43) that
∑

a∈{0,1}n−1 δ̃(s∗1, a) ≥ 0. Since δ̃ is an I1 function, Theorem 3 tells us that∑
a∈{0,1}n−1 δ̃(s∗∗1 ; a) ≥ 0. Therefore, we have

∆(s∗∗1 ) =
∑

a∈{0,1}n−1

δ̃(s∗∗1 ; a) + ε > 0

14In other words, the restriction of δ̄ to s∗1 and s∗∗1 is an I1 function.
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(by (39) and (44)).15 QED

Appendix

Proof of Theorem 2: To prove (i), consider s′′ > s′ and suppose the ranges of

f(s′′, ·) and f(s′, ·) are contained in some bounded interval I. Partition I into disjoint

intervals Ih, h = 1, 2, ..., K, with a mesh of 1/m. Denote by T̄ (h∗, h∗∗) the subset of

T such that for t ∈ T̄ (h∗, h∗∗), we have f(s′, t) ∈ Ih∗ and f(s′′, t) ∈ Ih∗∗ . Note that

the collection of sets T̄ (h∗, h∗∗), with h∗ and h∗∗ ranging between 1 and K form a

partition of T . Define the simple functions16 fm(s′, ·) and fm(s′′, ·) in the following

way: for t ∈ T̄ (h∗, h∗∗), choose fm(s′, t) = f(s′, t0) and fm(s′′, t) = f(s′′, t0) for

some t0 ∈ T̄ (h∗, h∗∗). It is easy to check that fm(s′, ·) tends to f(s′, ·) pointwise

(and, similarly, fm(s′′, ·) tends to f(s′′, ·) pointwise). Proposition 2 guarantees that,

if
∫
T
fm(s′, t) dt > 0 then

∫
T
fm(s′′, t) dt > 0 (since, in this case, the integrals are

finite sums). This guarantees that
∫
T
f(s′, t) dt > 0 implies that

∫
T
f(s′′, t) dt ≥ 0,

which is close, but not quite, to what we want.

Note that (i) can be broken into two claims: (a) that
∫
T
f(s′, t) dt ≥ 0 implies∫

T
f(s′′, t) dt ≥ 0, and (b) that

∫
T
f(s′, t) dt > 0 implies that

∫
T
f(s′′, t) dt > 0. To

obtain (a), suppose
∫
T
f(s′, t) dt ≥ 0. Note that claim (a) is trivial if f(s′, t) ≥ 0 a.e.

Assuming this is not the case, then there must also be t̃ such that f(s′, t̃) > 0. Thus,

for any α > 0,
∫
T
f(s′, t) dt+ αf(s′, t̃) > 0. The argument in the previous paragraph

guarantees that
∫
T
f(s′′, t) dt + αf(s′′, t̃) ≥ 0. Since this is true for any α > 0, we

conclude that
∫
T
f(s′′, t) dt ≥ 0.

To prove (b), first note that the problem is trivial if f(s′′, t) ≥ 0 for all t. So

there must be t̂ such that f(s′′, t̂) < 0. Assuming that
∫
T
f(s′, t) dt > 0, choose β > 0

sufficiently small, so that
∫
T
f(s′, t) dt + βf(s′, t̂) > 0. Therefore,

∫
T
f(s′′, t) dt +

βf(s′′, t̂) ≥ 0. Since f(s′′, t̂) < 0, we obtain
∫
T
f(s′′, t) dt > 0.

15Note how the introduction of ε guarantees that ∆(s∗∗1 ) is strictly positive.
16By a simple function we mean a measurable function that takes finitely many distinct values.
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To prove (ii), suppose g(s′) > 0 and F (s′) =
∫
T
f(s′, t) dt < 0. Let fm(s′, ·) and

fm(s′′, ·) be sequences of simple functions converging pointwise to f(s′, ·) and f(s′′, ·)

respectively. For m sufficiently large, Fm(s′) ≡
∫
T
fm(s′, t) dt < 0. This integral is

a finite sum, so by Proposition 2, −Fm(s′)/g(s′) ≥ −Fm(s′′)/g(s′′). Letting n→∞,

we obtain −F (s′)/g(s′) ≥ −F (s′′)/g(s′′). Thus, g � F . QED

The proof of Proposition 4 requires the following lemma.

Lemma 2 Suppose that h satisfies condition (iii) in Proposition 4. Then for any a1,

a2, b1, and b2 satisfying a1 < a2, b1 < b2, a1 ≤ b1, and a2 ≤ b2,

h(a2)− h(a1)

h(b2)− h(b1)
≥ h(a2 + w)− h(a1 + w)

h(b2 + w)− h(b1 + w)
where w ≥ 0. (45)

Proof: We prove (45) by the showing that the function F , given by

F (x) = ln (h(a2 + x)− h(a1 + x))− ln (h(b2 + x)− h(b1 + x))

is decreasing for x ≥ 0. Denoting h′ ◦ h−1 by f , the derivative

dF

dx
=

h′(a2 + x)− h′(a1 + x)

h(a2 + x)− h(a1 + x)
− h′(b2 + x)− h′(b1 + x)

h(b2 + x)− h(b1 + x)

=
f(h(a2 + x))− f(h(a1 + x))

h(a2 + x)− h(a1 + x)
− f(h(b2 + x))− f(h(b1 + x))

h(b2 + x)− h(b1 + x)
≤ 0,

where the final inequality holds because DARA guarantees f is a convex function

and (since h is strictly increasing) h(a1 + x) < h(a2 + x), h(b1 + x) < h(b2 + x),

h(a1 + x) ≤ h(b1 + x), and h(a2 + x) ≤ h(b2 + x). QED

Proof of Proposition 4: We need to show that ∆(·, t′′) ∼ ∆(·, t′). Suppose that

∆(s∗, t′′) > 0 and ∆(s∗, t′) < 0. This means that φ(x′′; s∗, t′′) − φ(x′; s∗, t′′) > 0

and φ(x′′; s∗, t′) − φ(x′; s∗, t′) < 0. Given that {φ(·; s∗, t)}t∈T obeys single crossing

differences (condition (ii)), this can only occur if t′ < t′′. Now (iv) guarantees that

φ(x′, s∗, t′) ≤ φ(x′; s∗, t′′), so we obtain

φ(x′′; s∗, t′) < φ(x′, s∗, t′) ≤ φ(x′; s∗, t′′) < φ(x′′; s∗, t′′).
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If s∗∗ > s∗ we have

− h(φ(x′′; s∗, t′))− h(φ(x′; s∗, t′))

h(φ(x′′; s∗, t′′))− h(φ(x′; s∗, t′′))

≥ h (φ(x′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− h (φ(x′′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])

h (φ(x′′; s∗, t′′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− h (φ(x′; s∗, t′′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])

≥ h (φ(x′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− h (φ(x′′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])

h (φ(x′′; s∗, t′′) + [φ(x′; s∗∗, t′′)− φ(x′; s∗, t′′)])− h (φ(x′; s∗, t′′) + [φ(x′; s∗∗, t′′)− φ(x′; s∗, t′′)])

≥ h (φ(x′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− h (φ(x′′; s∗, t′) + [φ(x′′; s∗∗, t′)− φ(x′′; s∗, t′)])

h (φ(x′′; s∗, t′′) + [φ(x′′; s∗∗, t′′)− φ(x′′; s∗, t′′)])− h (φ(x′; s∗, t′′) + [φ(x′; s∗∗, t′′)− φ(x′; s∗, t′′)])

= − h(φ(x′′; s∗∗, t′))− h(φ(x′; s∗∗, t′))

h(φ(x′′; s∗∗, t′′))− h(φ(x′; s∗∗, t′′))

The first inequality follows from Lemma 2, the second inequality from condition (v)

(either versions (a), (b), or (c)), and the third inequality from the fact that h is

increasing and that {φ(·; s, t)}s∈S obeys increasing differences (condition (i)). QED

Proof of Proposition 6: Only the “if” part of this claim is nontrivial. A proof with

full generality would be heavy with notation, and in a way that may obscure what is

going on. Instead of doing that, we shall confine ourselves to a special case that has

all the essential features of a complete proof. The reader will have no problems filling

in the details for the general case.

Suppose S = Π3
i=1Si and s′′3 > s′3; we claim that f(·, s′′3) ∼ f(·, s′3) if the following

holds: (i) for any s1 and s′′3 > s′3, we have f(·, (s1, s
′′
3)) ∼ f(·, (s1, s

′
3)) and (ii) whenever

(s′′2, s
′′
3) > (s′2, s

′
3), we have f(·, (s′′2, s′′3)) ∼ f(·, (s′2, s′3)). (Notice that K has exactly

two elements in both (i) and (ii).) It suffices to show that

−f(s∗1, s
∗
2, s
′
3)

f(s∗1, s
∗
2, s
′′
3)
≥ −f(s∗∗1 , s

∗∗
2 , s

′
3)

f(s∗∗1 , s
∗∗
2 , s

′′
3)

(46)

when (s∗∗1 , s
∗∗
2 ) > (s∗1, s

∗
2) (see (15)). The left of this inequality is positive by assump-

tion. Since f is an S function, f(s∗∗1 , s
∗∗
2 , s

′′
3) > 0 so (46) holds if f(s∗∗1 , s

∗∗
2 , s

′
3) ≥ 0.

Therefore (and this is the crucial nontrivial observation in the proof), we may confine

ourselves to the case where f(s∗∗1 , s
∗∗
2 , s

′
3) < 0. We claim that

−f(s∗1, s
∗
2, s
′
3)

f(s∗1, s
∗
2, s
′′
3)
≥ −f(s∗∗1 , s

∗
2, s
′
3)

f(s∗∗1 , s
∗
2, s
′′
3)
≥ −f(s∗∗1 , s

∗∗
2 , s

′
3)

f(s∗∗1 , s
∗∗
2 , s

′′
3)
.

41



The first inequality holds because of (ii). Note also that f(s∗∗1 , s
∗
2, s
′
3) < 0 (since

f(s∗∗1 , s
∗∗
2 , s

′
3) < 0 and f is an S function) and f(s∗∗1 , s

∗
2, s
′′
3) > 0 (since f(s∗1, s

∗
2, s
′′
3) > 0

and f is an S function). Therefore, (i) guarantees that the second inequality holds.

This establishes (46). QED

Our proof of Theorem 3 requires the following extension of Lemma 1.

Lemma 3 Let f : S → R be an I1 function and sjn (for j = 1, 2, ..L) be elements of

Sn, with sjn < sj+1
n . Then Fn : SNn → R defined by Fn(sNn) =

∑L
j=1 f(sNn , s

j
n) is an

I1 function.

Proof: By Lemma 1, this lemma is true for L = 2. Assuming that it is true for a

sum of L − 1 functions, we show that it is true for a sum of L functions. Consider

the function h : Πn−1
j=1 Sj × {0, 1} → R given by h(sNn , 0) =

∑L−1
j=1 f(sNn , s

j
n) and

h(sNn , 1) = f(sNn , s
L
n). We claim that h is an I1 function; assuming this, Lemma 1

tells us that the map from sNn to h(sNn , 0)+h(sNn , 1) is an I1 function, but this map

is precisely Fn.

Firstly, note that h is an S function, since f is an S function and h(·, 0) is an

I1 – hence S – function by assumption. To check that (14) holds, let K ⊆ Nn

and suppose that s′′K > s′K , with s′′1 = s′1 if 1 is in K. Since f is an I1 function,

h(·, s′′K , 1) ∼ h(·, s′K , 1), and since h(·, 0) is an I1 function by assumption, we also

have h(·, s′′K , 0) ∼ h(·, s′K , 0). Given that f is an I1 function, Proposition 2 tells us

that h(·, s′′K , 1) ∼ h(·, s′K , 0). By Proposition 6, the only case of condition (14) we

still need to show is that h(s′′K , ·) ∼ h(s′K , ·), when K = Nn, but in this case (14) is

guaranteed by Proposition 3(i). QED

Proof of Theorem 3: First note that, by Theorem 2, Fn is an S function. It remains

for us to show that Fn(·, s′′K) ∼ Fn(·, s′K) for K ⊆ {2, 3, ..., n − 1} and s′′K > s′K .

Suppose s′′ > s′ with Fn(s′, s′′K) > 0 and Fn(s′, s′K) < 0. We wish to show that

−Fn(s′, s′K)

Fn(s′, s′′K)
≥ −Fn(s′′, s′K)

Fn(s′′, s′′K)
. (47)
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Using the same procedure as that in Theorem 2, we can construct four sequences of

simple functions fm(x, y, ·) defined on Sn, for x = s′, s′′ and y = s′K , s′′K , such that

fm(x, y, ·) → f(x, y, ·) pointwise and fm(x, y, sn) =
∑

j∈J(m) IAm(j)f(x, y, s̃jn), where

{Am(j)}j∈J(m) is a collection of disjoint measurable subsets of Sn, s̃jn ∈ Am(j) for every

j ∈ J(m), and IAm(j) is the indicator function, with IAm(j)(sn) = 1 if sn ∈ Am(j) and

0 otherwise. Define Fm
n (x, y) =

∫
Sn
fm(x, y, sn) dsn. Note that this integral is a finite

sum, so by Lemma 3, Fm
n (·, s′′K) ∼ Fm

n (·, s′K) on the domain {s′, s′′}. For m sufficiently

large, Fm
n (s′, s′′K) > 0 and Fm

n (s′, s′K) < 0, so we obtain

−F
m
n (s′, s′K)

Fm
n (s′, s′′K)

≥ −F
m
n (s′′, s′K)

Fm
n (s′′, s′′K)

.

Letting m tend to infinity gives (47). QED

Proof of Proposition 7: Theorem 2(ii) tell us that, for a given s′N\{1,n},

Fn(·, s′N\{1,n}) ∼ g, (48)

since Fn(·, s′N\{1,n}) is the integral over {f(·, s′N\{1,n}, sn)}sn∈Sn , which is an S-summable

family of functions of s1, with f(·, s′N\{1,n}, sn) ∼ g for all sn ∈ Sn.

Define Fn−1 : Πn−2
i=1 Si → R by Fn−1(sN\{n−1,n}) =

∫
Sn−1

Fn(sN\{n}) dsn−1. For a

given s′N\{1,n−1,n}, we claim that Fn−1(·, s′N\{1,n−1,n}) ∼ g. Once again, this follows

from Theorem 2(ii): note that Fn−1(·, s′N\{1,n−1,n}) is the integral over

{Fn(·, s′N\{1,n−1,n}, sn−1)}sn−1∈Sn−1 ,

which is an S-summable family of functions of s1 (by Theorem 3); furthermore, by

(48), we have Fn(·, s′N\{1,n−1,n}, sn−1) ∼ g for every sn−1. Clearly this argument can

be repeated until we obtain F ∼ g. QED

Proof of Proposition 8: By Theorem 2, F̄n(·, sn) is an S function. Furthermore,

suppose F̄n(sNn , 0) ≥ (>) 0. This implies that there is ẑn ≤ ŝn such that f(sNn , ẑn) ≥

(>) 0 which in turn guarantees that f(sNn , zn) ≥ (>)0 for all zn > ŝn (since f is an S

function). It follows that F̄n(sNn , 1) ≥ (>)0. Therefore F̄n is an S function. To check
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that F̄n is an I1 function, we need to check that

F̄n(·, s′′K) ∼ F̄n(·, s′K), (49)

where s′′K and s′K satisfy the conditions identified in Proposition 6. There are three

cases to consider. (i) Suppose n ∈ K and s′′n = s′n (in other words, either both equal

zero or both equal 1). Then (49) is true since Theorem 3 guarantees that F̄n(·, sn) is an

I1 function. (ii) Suppose n ∈ K and s′′n = 1 > s′n = 0. Note that f(·; (s′K\{n}, z
′
n)) ∼

f(·, (s′′K\{n}, z′′n)) for z′n ≤ ŝn < z′′n. Integrating f(·, (s′K\{n}, z′n) with respect to z′n ≤ ŝn

gives F̄n(·, (s′K\{n}, 0)) = F̄n(·, s′K) while integrating f(·, (s′′K\{n}, z′′n)) with respect to

z′′n ≥ ŝn gives F̄n(·, (s′′K\{n}, 1)) = F̄n(·, s′′K). In this case, Proposition 2 guarantees

(49). (iii) Suppose n /∈ K; since K has n− 1 elements, f(·, s′′K) and f(·, s′K) are both

functions of the scalar sn. By the fact that f is an I1 function, f(·, s′′K) ∼ f(·, s′K),

which guarantees (49) (using Proposition 3(ii)).

By repeating this argument we conclude that F̄ is an I1 function. QED

Proof of Theorem 5 continued: For case (I) we still need to show that δ̄ (when

restricted to s∗1 and s∗∗1 ) is an I1 function. Given condition (b), δ̄(s∗1, 0) < 0 and

δ̄(s∗∗1 , 0) < 0. Furthermore, ū1(b′′; ·) is an I1 - hence S - function. Together these

observations tell us that δ̄ (when restricted to s∗1 and s∗∗1 ) is an S function. By

Proposition 6, to show that it is an I1 function, it remains for us to check the following:

(A) δ̄(s1, ·, a′′K) ∼ δ̄(s1, ·, a′K) for a′′K > a′K , where K ⊂ N1, and for s1 = s∗1, s
∗∗
1 and

(B) δ̄(·, a′′) ∼ δ̄(·, a′) for a′′ > a′.

Property (A) says that

−
δ̄(s1, a

′
N1\K , a

′
K)

δ̄(s1, a′N1\K , a
′′
K)
≥ −

δ̄(s1, a
′′
N1\K , a

′
K)

δ̄1(s1, a′′N1\K , a
′′
K)

(50)

whenever a′′N1\K > a′N1\K and δ̄(s1, a
′
N1\K , a

′
K) and δ̄(s1, a

′
N1\K , a

′′
K) are negative and

positive respectively. Since ū1(b′′, ·) is an I1 function, (50) is true if (a′N1\K , a
′
K) > 0

(because of (40)). This leaves us with the case when (a′N1\K , a
′
K) = 0. First note

that we may assume that δ̄(s1, a
′′
N1\K , a

′
K) = ū1(b′′, s1, a

′′
N1\K , a

′
K) < 0; if not, (50)
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is always true because its right hand side is negative. This in turn guarantees that

ū1(b′′; s1, a
′
N1\K , a

′
K) = ū1(b′′; s1, 0) < 0 since ū1(b′′; ·) is an S function. We claim that

−
δ̄(s1, a

′
N1\K , a

′
K)

δ̄(s1, a′N1\K , a
′′
K)

= −
ū1(b′′; s1, a

′
N1\K , a

′
K)

ū1(b′′; s1, a′N1\K , a
′′
K)

+
V1(b′; s)

ū1(b′′; s1, a′N1\K , a
′′
K)

≥ −
ū1(b′′; s1, a

′
N1\K , a

′
K)

ū1(b′′; s1, a′N1\K , a
′′
K)
≥ −

ū1(b′′; s1, a
′′
N1\K , a

′
K)

ū1(b′′; s1, a′′N1\K , a
′′
K)

= −
δ̄(s1, a

′′
N1\K , a

′
K)

δ̄(s1, a′′N1\K , a
′′
K)
.

The first equation follows from (41); the first inequality from the fact that V1(b′; s1) ≥

0 for s1 = s∗1, s
∗∗
1 ; the second from the fact that ū1 is an I1 function and that

ū1(b′′; s1, a
′
N1\K , a

′
K) and ū1(b′′; s1, a

′
N1\K , a

′′
K) are negative and positive respectively;

and the last equation from (40).

We now turn to the proof of property (B). When a′ > 0, (B) follows from (40) and

the the fact that ū1(b′′; ·) is an I1 function. So we turn to the case where a′ = 0. Now

suppose a′′ = (1, 1, ..., 1); it follows from assumptions (a), (c), and Corollary 7 that,

for every s′N1
< (ŝ2, ŝ3, ..., ŝn), we have δ̄(·; s′N1

) ∼ δ̄(·, a′′). This relation is preserved

by integration over all s′N < (ŝ2, ŝ3, ..., ŝn) (by assumption (b) and Proposition 7) and

so δ̄(·, 0) ∼ δ̄(·, a′′).

Next we consider the case where a′′i = 0 for i = 2, 3, ...,m and a′′i = 1 for i > m.

Denote the set {1, 2, ..,m} by M and a typical vector in Πm
i=1Si by sM . Define the

function α : S1 × Πm
i=2 [0, ŝi]× {0, 1} → R by

α(sM , 0) =

∫ ŝm+1

0

∫ ŝm+2

0

...

∫ ŝn

0

δ(sM , sN\M) dsm+1 dsm+2 ...dsn and

α(sM , 1) =

∫ s̄m+1

ŝm+1

∫ s̄m+2

ŝm+2

...

∫ s̄n

ŝn

δ(sM , sN\M) dsm+1 dsm+2 ...dsn.

We claim that α is an I1 function. If so, ᾱ : S1 × {0, 1} → R defined by

ᾱ(s1, x) =

∫ ŝ2

0

∫ ŝ3

0

...

∫ ŝm

0

α(sM , x)ds2ds3...dsm

is an I1 function. Therefore, ᾱ(·, 0) ∼ ᾱ(·, 1). Since ᾱ(s1, 0) = δ̄(s1, 0) and ᾱ(s1, 1) =

δ̄(s1, a
′′), we obtain (B). To see that α is an I1 function, we first note that α(·, 0)
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and α(·, 1) are I1 functions. Furthermore, α(sM , 0) < 0 for any sM , so it is trivially

true that α(s′M , ·) ∼ α(s′′M , ·) for s′′M ≥ s′M . The only property that still needs to be

checked is that α(·, s′K , 0) ∼ α(·, s′′K , 1), where K ⊆ M \ {1}, and s′K ≤ s′′K . This

follows from Proposition 7 and condition (c) since δ(·, s′K , s′N\M) ∼ δ(·, s′′K , s′′N\M) for

all s′K < s′′K and s′N\M < (ŝm+1, ŝm+2, ..., ŝn) < s′′N\M .

For case (II) we need to show that δ̃ is an I1 function. Note, firstly, that it is an

S function. This is true because ū1(b′′; ·) is an S function and δ̃(s∗1, 0) and δ̃(s∗∗1 , 0)

are both strictly negative. Since δ̃(s∗1, 0) = ū1(b′′; s∗1, 0) it follows from (41) that

δ̃(s∗1; 0) = δ̄(s∗1; 0) + V (b′; s∗1) < 0, (51)

while δ̃(s∗∗1 ; 0) < δ̄(s∗∗1 ; 0) < 0. By Lemma 6, we also need to check the following:

(A′) δ̃1(s1, ·, a′′K) ∼ δ̃1(s1, ·, a′K) for a′′K > a′K , where K ⊂ N1, and for s1 = s∗1, s
∗∗
1

and (B′) δ̃(·, a′′) ∼ δ̃1(·, a′) for a′′ > a′. (A′) holds for s1 = s∗1 because ū1(b′′; ·) is an

I1 function; to see that it holds for s1 = s∗∗1 we need only repeat the argument we

gave to establish (A) in Case I above, using the condition that V1(b′; s∗∗) ≥ 0.17 (The

inclusion of −ε in this case does not materially alter the argument.) Turning to the

proof of (B′), if a′′ > a′ > 0, then (B′) follows immediately from that fact that ū1(b′′; ·)

is an I1 function. So consider the case where a′ = 0 and suppose δ̃(s∗1; a′′) > 0. Then

− δ̃(s∗1, 0)

δ̃(s∗1, a
′′)
> − δ̄(s∗1, 0)

δ̄(s∗1, a
′′)
≥ − δ̄(s∗∗1 , 0)

δ̄(s∗∗1 , a
′′)
.

The first inequality holds (and it is a strict inequality) since V (b′; s∗1) < 0, which

guarantees that −δ̃(s∗1, 0) > δ̄(s∗1, 0) (see (51)). For the second inequality see the

proof of property (B) (in case I). For ε sufficiently small, the inequality is preserved

(for all possible a′′, of which there are only finitely many) when we replace δ̄ with δ̃,

i.e.,

− δ̃(s∗1, 0)

δ̃(s∗1, a
′′)
> − δ̃(s∗∗1 , 0)

δ̃(s∗∗1 , a
′′)
,

17The case where V1(b′; s∗∗) < 0 has already been dealt with in the main part of the paper.
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as required by (B′). QED
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