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Abstract

The object of this paper is to produce distributional forecasts of physical volatility
and its associated risk premia using a non-Gaussian, non-linear state space approach.
Option and spot market information on the unobserved variance process is captured
by using dual �model-free�variance measures to de�ne a bivariate observation equation
in the state space model. The premium for di¤usive variance risk is de�ned as linear
in the latent variance (in the usual fashion) whilst the premium for jump variance risk
is speci�ed as a conditionally deterministic dynamic process, driven by a function of
past measurements. The inferential approach adopted is Bayesian, implemented via
a Markov chain Monte Carlo algorithm that caters for the multiple sources of non-
linearity in the model and the bivariate measure. The method is applied to empirical
spot and option price data for the S&P500 index over the 1999 to 2008 period, with
conclusions drawn about investors�required compensation for variance risk during the
recent �nancial turmoil. The accuracy of the probabilistic forecasts of the observable
variance measures is demonstrated, and compared with that of forecasts yielded by
more standard time series models. To illustrate the bene�ts of the approach, the
posterior distribution is augmented by information on daily returns to produce Value
at Risk predictions, as well as being used to yield forecasts of the prices of derivatives
on volatility itself. Linking the variance risk premia to the risk aversion parameter in
a representative agent model, probabilistic forecasts of relative risk aversion are also
produced.
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1 Introduction

Volatility estimates play a central role in �nancial applications, with accurate forecasts of

future volatility being critical for asset pricing, portfolio management and Value at Risk

(VaR) calculations. Along with the information on volatility embedded in historical returns

on a �nancial asset, the prices of options written on the asset also shed light on the option

market�s assessment of the volatility that is expected to prevail over the remaining life of

the options. As such, many forecasting exercises have used both sources of market data

to extract information on future volatility, with the relative accuracy of the options- and

returns-based forecasts being gauged via a variety of means (e.g. Blair, Poon and Taylor,

2001, Martens and Zein, 2004, Pong, Shackleton, Taylor and Xu, 2004, Jiang and Tian, 2005,

Koopman, Jungbacker and Hol, 2005, and Martin, Reidy and Wright, 2009).

Crucially, as option pricing occurs under the risk-neutralized measure for the underlying

asset price process, any systematic disparity between returns- and option-implied volatility

forecasts can be viewed as evidence of the option market having factored in non-zero prices

for various risk factors, including variance risk. A recent literature has evolved in which

this disparity has been used - in one way or another - to extract information on variance

risk premia (e.g. Guo, 1998, Chernov and Ghysels, 2000, Pan, 2002, Jones, 2003, Eraker,

2004, Forbes, Martin and Wright, 2007, Eraker, 2008, Bollerslev, Tauchen and Zhou, 2009,

Bollerslev, Sizova and Tauchen, 2009, Bollerslev and Todorov, 2009, Carr and Wu, 2009,

Bollerslev, Gibson and Zhou, 2011, Duan and Yeh, 2010). However, in none of this work has

the primary focus been the extraction of the risk premia for the purpose of improving the

accuracy with which objective volatility can be forecast from the dual data source.

The primary aim of this paper is to combine option and spot price information with a

view to producing accurate forecasts of the objective volatility process of the underlying. A

non-Gaussian, non-linear state space framework is used to model volatility and its associated

(time-varying) risk premia as latent state variables. Rather than link market price informa-

tion to the state variables via complex theoretical option price formulae, we use direct non-

parametric measures of volatility (see Britten-Jones and Neuberger, 2000, Barndor¤-Nielsen

and Shephard, 2002, Andersen, Bollerslev, Diebold and Labys, 2003, Jiang and Tian, 2005)

to de�ne a bivariate observation equation.

A secondary aim is to forecast the variance risk premia factored into the options-based

measure. Motivated by empirical evidence, the state space representation is based on a model

in which random jumps can occur contemporaneously in the asset price and the variance. By

making appropriate adjustments to the observable volatility measures, variation in the price

jumps is modelled non-parametrically. An explicit parametric model is then adopted for the
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latent variance, including its two associated risk premia: one that compensates for small

and regular movements in the variance (the di¤usive variance risk premium), and the other

compensating for rare jumps (the jump variance risk premium). The di¤usive risk premium

is parameterized in the conventional way, as proportional to the latent variance itself. The

jump variance risk premium is also allowed to be time varying. Speci�cally, a conditionally

deterministic process, driven in part by the past �observed�risk premium, is used to capture

the dynamic behaviour of this component of the model. This aspect of our approach is

somewhat similar in spirit to the analysis of Todorov (2010), in which past realized jumps

are allowed to a¤ect the compensation for future jump risk demanded by investors.

Probabilistic forecasts of the latent variance, the variance risk premia and the observable

variance measures, are produced using Bayesian methods. This focus on probabilistic fore-

casting, whilst inherent to the Bayesian inferential paradigm, is also consistent with more

general developments in the recent forecasting literature, in which distributional forecasts

per se are viewed as the primary object of interest. (See, for example, Corradi and Swanson,

2006, Gneiting, Balabdaoui and Raftery, 2007, Gneiting, 2008, Geweke and Amisano, 2010,

McCabe, Martin and Harris, 2010). The Bayesian predictive distributions are produced via

a Markov chain Monte Carlo (MCMC) algorithm that caters for the non-linearities in the

model and that allows for multi-move sampling of the latent variances. The conditionally

deterministic speci�cation for the jump risk premium is computationally convenient, with

the posterior distribution of the risk premium at any time point - including future time points

- able to be estimated from the MCMC draws of the parameters to which the premium is

functionally related.

The method is applied to empirical spot and option price data for the S&P500 index over

the 1999 to 2008 period. Distributional forecasts are produced for all latent and observable

quantities of interest, for an evaluation period including both the lead up to the recent global

�nancial crisis and the peak of the crisis at the end of 2008. Most notably, the extraction

of forecasts for the variance risk premia enables a picture to be constructed of the extent

to which investors� expectations of future risks - and, correspondingly, their demand for

compensation - is a¤ected by extreme daily movements in the market. The accuracy of

the probabilistic forecasts of the (observable) measures of variance is compared with that of

forecasts produced by standard time series models for these quantities, using predictive log

scores.

Illustrations of how the predictions can be used in �nancial applications are provided.

First, the model is augmented by observations on daily returns to produce probabilistic

forecasts of returns themselves, from which VaR predictions are extracted. Secondly, we

illustrate how the predictions of the latent variance may be used to estimate the prices of
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futures written on volatility itself. Finally, coupled with a particular form of representative

agent model, forecasts of the variance risk premia are transformed into probabilistic forecasts

of the relative risk aversion of the representative investor.

The remainder of the paper is organized as follows. Section 2 describes the model assumed

to underlie both the spot and option price data, including the variance risk premia that form

part of that model. Section 3 outlines the state space approach that we use to analyze the

model, including the dynamic risk premia that we embed within it. A description of the

MCMC algorithm used to estimate the latent variables and static parameters and to produce

the forecasts is provided in Section 4, with all details of the component of the algorithm that

relates to the sampling of the latent variances provided in Appendix A. The results of an

extensive empirical investigation of intraday spot and option price data for the S&P500 index

from July 1999 to December 2008 are reported in Section 5. Some conclusions are given in

Section 6.

2 Objective and Risk Neutral Distributions

The spot price Pt and objective stochastic variance Vt are assumed to evolve according to

the following bivariate process,

d lnPt = (��
Vt
2
)dt+

p
VtdB

p
t + dJ

p
t (1)

dVt = �[� � Vt]dt+ �v
p
VtdB

v
t + dJ

v
t ; (2)

where dJ it = ZitdNt; i = fp; vg, Zpt jZvt � N(�p + �JZ
v
t ; �

2
p); Z

v
t � Exp(�v), P (dNt =

1) = �Jdt and P (dNt = 0) = (1� �J) dt: Under this speci�cation, random jumps in the

price and variance occur contemporaneously at rate �J , but with magnitudes determined

respectively by a normal and an exponential distribution. The magnitudes of jumps in

the price and variance processes are assumed to be correlated, governed by �J . The two

Brownian increments dBpt and dB
v
t are correlated with a coe¢ cient �; however dB

i
t and dJ

i
t

are assumed to be independent, for i = fp; vg : This model is often referred to in the literature
as the stochastic volatility with contemporaneous jumps (SVCJ) model (e.g. Du¢ e, Pan and

Singleton, 2000, Eraker, Johannes and Polson, 2003, Eraker, 2004, Broadie, Chernov and

Johannes, 2007).1

Based on this particular dynamic model, equilibrium arguments can be used to produce

1Bates (2000) and Pan (2002) have proposed extentions of this model in which the jump frequency (�J)
depends on the level of variance.

4



the following risk-neutral distribution,

d lnPt = (r � Vt
2
)dt+

p
VtdB

�p
t + dJ�pt � ��p�Jdt (3)

dVt = ��[�� � Vt]dt+ �v
p
VtdB

�v
t + dJ

�v
t ; (4)

under which options on the underlying asset are priced, where r denotes the risk-free interest

rate (assumed constant), dJ�it = Z�it dN
�
t , i = fp; vg; Z

�p
t � N(��p; �2p); Z�vt � Exp(��v) and

we impose ��J = �J : The term ���p�Jdt on the right hand side of (3) compensates the jump
process.

Implicit in the move from (2) to (4) is the transformation

��[�� � Vt] = �[� � Vt]� �DVt;

where

�� = �+ �D; �
� =

��

��
(5)

and �D is a scalar parameter. The term �DVt represents the premium associated with

di¤usive variance risk, with the value of �D determining the magnitude (and sign) of the

premium factored into option prices for the risk associated with small and regular changes

in the non-traded state variable, Vt. We interpret

��p � �p and (6)

��v � �v (7)

as the premia for price and variance jump (size) risk respectively. As outlined below, our

approach to estimating the model is such that ��p��p in (6) is not identi�ed, with our focus
being solely on the identi�cation and estimation of the variance risk premium parameters

�D and ��v � �v; with the latter denoted by �J hereafter. The speci�cation in (7) for �J
amounts to the assumption that investors factor into their option pricing a premium that

equals the di¤erence between the risk neutral expected mean jump size (for the variance)

and the corresponding objective mean.2

Empirical estimates of �D and �J reported in the literature are (not surprisingly) model

dependent. In pure stochastic volatility models (in which no jumps or jump premia are

parameterized), estimates of �D are typically negative (see, for example, Guo, 1998, Forbes

et al., 2007, Bollerslev et al., 2011), which implies slower reversion (�� < � ) to a higher

2Eraker (2008) considers a parameterization of the risk neutral distribution in which the intensity pa-
rameter �J di¤ers between the objective and risk neutral processes and, hence, incorporates the premium.
Duan and Yeh (2010) adopt a parameterization that allows the jump risk premium to re�ect a premium for
both jump size and jump timing.
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mean level (�� > �) under the risk neutral distribution. However, as outlined in some detail

by Broadie et al. (2007), empirical conclusions regarding the signi�cance and sign of �D are

less clear cut once jumps (and associated premia) are included in the model speci�cation.

Overall, current empirical evidence points to �J being signi�cantly greater than zero, with

the signi�cance of �D tending to be reduced accordingly. A signi�cantly positive value for

�J leads to the same qualitative result as a signi�cantly negative value of �D: That is, either

numerical outcome leads to a higher long run mean under the risk-neutral measure than

under the objective measure, given that the two long-run means are given respectively by

E�(Vt) =
�� + (�v + �J)�J

�+ �D

and

E(Vt) =
�� + �v�J

�
:

This implies, in turn, that (call) options are priced higher under the risk-neutral process,

on average, than if they had been priced under the objective measure. That is, these signs

for the risk premium parameters (�D < 0 and �J > 0 respectively) imply that investors are

willing to pay a premium for options, as a hedge against movements in the spot price that

result from either the di¤usive or jump components of the random variance (or both).

As is clear from (5) and (7), observed option prices, assumed to be priced according

to (3) and (4), can be used to identify the parameters of the objective process, and the

risk premia, �D and �J , only if additional information on the objective parameters and/or

�D and �J , is introduced. Previous analyses (based on a variety of versions of the model

presented here) have solved this identi�cation problem: by jointly estimating the objective

and risk-neutral processes using option and spot price data (e.g. Chernov and Ghysels,

2000, Pan, 2002, Polson and Stroud, 2003, Eraker, 2004, Forbes et al., 2007, Johannes,

Polson and Stroud, 2009); by using option price data only to estimate (3) and (4), and

extracting estimates of the risk premium parameters via separate return-based estimates of

the objective parameters (e.g. Guo, 1998, Broadie et al., 2007); or by imposing theoretical

restrictions on the risk premia (Bates, 2000). Most importantly, in all of these studies, the

link between observed market option prices and the underlying model in (3) and (4) occurs

indirectly, via a parametric theoretical option price formula derived as the expected value of

the discounted payo¤ of the option under the risk-neutral measure. In contrast, we link the

observed option price data to the model in (3) and (4) directly, by using a non-parametric

estimate of expected integrated variance over the life of the option, evaluated according to

the risk-neutral process in (4). (See also Eraker, 2008, and Duan and Yeh, 2010, for recent

applications of option-implied volatility measures in state space settings). Analogously, the

6



observed spot data is linked to the objective process in (1) and (2) by using high frequency

returns to estimate the integrated variance associated with the objective process.

In the following section we outline the state space model based on the observed volatility

measures, with both risk premium parameters, �D and �J ; assumed to be constant. In

Section 3.2 we extend the model to allow for a dynamic model for �J : In common parlance,

the model we adopt for �J is observation-driven, with the value of �J at time t, �Jt, given

by a deterministic function of �Jt�1 and the �observed�value of �Jt�1, denoted by lJt�1: In

specifying lJt�1, we exploit recent theoretical developments in Carr and Wu (2009) (amongst

others) to link the di¤erence between the two observed measures of variance over the option

maturity period to �Jt.

3 A State SpaceModel Based on Spot Price and Option-
Implied Volatility Measures

3.1 Constant risk premium parameters

Given the objective variance process in (2), we de�ne quadratic variation over the horizon

t� 1 to t (call this day t) as

QVt�1;t =
Z t

t�1
Vsds +

NtP
t�1<s�t

(Zps )
2 :

That is, QVt�1;t is equal to the sum of the integrated variance of the continuous sample path
component of Pt,

Vt�1;t =
Z t

t�1
Vsds;

and the sum of theNt�Nt�1 squared jumps that occur on day t:Denoting rti = lnPti�lnPti�1
as the ith transaction (logarithmic) return, it is now standard knowledge (Barndor¤-Nielsen

and Shephard, 2002, and Anderson et al., 2003) that

RVt =

MX
ti2[t�1;t]

r2ti
p! QVt�1;t; (8)

where RVt is referred to as realized variance andM is equal to the number of intraday returns

on day t. On the other hand, bipower variation,

BVt =
�

2

MP
ti2[t�1;t]

jrtij
��rti�1�� ; (9)
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is a consistent estimator of Vt�1;t in the presence of price jumps (Barndor¤-Nielsen & Shep-

hard, 2004).3

With a view to avoiding the need to explicitly model the price jump process - and its

associated risk premium - in the state space framework, we adopt BVt (rather than RVt) as a

spot-price-based measure of the latent variance. With the value ofM used in the calculation

of BVt assuming a �nite value in practice, we view BVt as a noisy measure of the unobserved

integrated variance by specifying

BVt = Vt�1;t + uBVt ; uBVt � N(0; �2BV V 2t ); (10)

where the latent variance underlying Vt�1;t evolves according to (2). The adoption of a
Gaussian measurement error (conditional on the volatility path) is motivated, in part, by

computational convenience, whilst the use of a state-dependent measurement error variance is

motivated by the clear need for such a speci�cation in the case of the empirical data analyzed

in Section 5. However, the form of measurement error in (10) also has some additional

justi�cation, by being broadly consistent with existing asymptotic theory regarding BVt, in

a more limited setting. Speci�cally, Barndor¤-Nielsen and Shephard (2006) demonstrate

that under the assumption of no jumps, asM !1; BVt converges to a normal distribution
with a variance that is an increasing function of integrated quarticity, IQt�1;t =

R t
t�1 V

2
s ds.

As well as having spot-price based observations on the latent variance, we have option-

based measurements via the following logic. Bollerslev and Zhou (2002) and Garcia, Lewis,

Pastorello and Renault (2011), amongst others, derive a set of conditional moments for the

integrated variance of Heston�s (1993) stochastic volatility model, which corresponds to (2)

above, with dJvt set to zero. De�ning Ft = �fVs; s � tg as the sigma-algebra generated by
the point-in-time variance process, and using E(�jFt) to denote a conditional expectation
with respect to the objective measure, the conditional mean for integrated variance under

the physical measure, over the period from t to t+� , in this case can be expressed as a linear

function of the point-in-time variance,

E(Vt;t+� jFt) = E
�Z t+�

t

Vsds

����Ft� = a�Vt + b� ; (11)

where

a� =
1

�

�
1� e���

�
and b� = �� �

�

�

�
1� e���

�
: (12)

Extending these existing results to cater for the distribution in (4), and using E�(�jFt) to
denote a conditional expectation with respect to the risk neutral measure, the risk-neutral

3Implicit in the results in (8) and (9) is the assumption that microstructure noise e¤ects are absent.
The formal incorporation of microstructure noise in the assumed process for intraday returns has led to
modi�cations of RVt and BVt that are consistent estimators of QVt�1;t and Vt�1;t respectively, in the
presence of such noise; see Martin et al. (2009) for a recent summary.
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expectation of integrated variance over the horizon t to t+ � is given by

E�(Vt;t+� jFt) = a��Vt + b�� + E�
�Z t+�

t

Z�vs dN
�
s

����Ft� ; (13)

where

a�� =
1

��
(1� e����) and b�� = ��

� � ��

��
(1� e����);

and where �� and �� are de�ned in (5). With the assumed independence of dJ�vt over time,

plus the contemporaneous independence between Z�vs and dN�
t , then

E�
�Z t+�

t

Z�vs dN
�
s

����Ft� = E�
�Z t+�

t

Z�vs dN
�
s

�
=

Z t+�

t

E� [Z�vs ]E
�
s [dN

�
t ]

=

Z t+�

t

��v�Jds

= � [�v + �J ] �J ;

given ��v = �v + �J from (7).

As shown by Jiang and Tian (2005) and Carr and Wu (2009) (and as based on the

earlier work of Britten-Jones and Neuberger, 2000), the risk-neutral expectation of quadratic

variation is implied by a continuum (over strike K) of option prices with maturity � > 0,

C(t+ � ;K), as

E�(QVt;t+� jFt) = E�(Vt;t+� jFt) + E�
�

Nt+�P
t<s�t+�

(Zps )
2

�
= 2

Z 1

0

C(t+ � ;K)� C(t;K)
K2

dK: (14)

Hence, E�(QVt;t+� jFt) is referred to as �model free� implied variance. Importantly, this

measure eschews the dependence of the ubiquitous Black-Scholes option-implied variance on

the empirically invalid assumption of geometric Brownian motion for the underlying asset

price.

Given an estimate of E�(QVt;t+� jFt) in (14), based on a �nite set of observed option
prices on day t and denoted by MFQVt , we de�ne the following option-based measurement

equation,

MFt = MFQVt � bE� � Nt+�P
t<s�t+�

(Zps )
2

�
= E�(Vt;t+� jFt) + uMFt ; uMFt � N(0; �2MFV

2
t ); (15)
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where uMFt captures both the error associated with the discretization and truncation of the

integral in (14) and the measurement error in bE� � Nt+�P
t<s�t+�

(Zps )
2

�
. As with (10), a (condi-

tionally) Gaussian measurement error is adopted for convenience, with a state-dependent

measurement error variance motivated again by empirical considerations. We follow Boller-

slev et al. (2011) in estimating E�
�

Nt+�P
t<s�t+�

(Zps )
2

�
as some constant proportion (c) of the

estimated objective expectation, bE � Nt+�P
t<s�t+�

(Zps )
2

�
, measured as follows.4 Following Tauchen

and Zhou (2011), we identify the presence of a signi�cant price jump on any day t by the

realization of the statistic,

ZJt =
RJtr

(2:61� 2)M�1max
�
1; TPt

BV 2t

� ; (16)

where RJt = RVt�BVt
RVt

; and where tri-power quarticity, TPt; serves as a consistent estimator

of the integrated quarticity, IQt�1;t. Realized price jump variation on day t is then extracted

by means of

JVt = I (ZJt > Z�)�max (0; RVt �BVt) ; (17)

with a time series of values for JVt produced accordingly.5 As is consistent with the bulk of

the empirical literature and with the theoretical assumption of independent jumps over time,

JVt (as based on the empirical data analyzed in Section 5) exhibits little autocorrelation.6

Hence, a short-memory autoregressive model of order one is used to produce point predic-

tions, conditional on data up to time t; of JVt;t+1; JVt;t+2; ..., JVt;t+� ; with bE � Nt+�P
t<s�t+�

(Zps )
2

�
given as the aggregate of these � predictions. The (modi�ed) option-implied measure used

in (15) is then

MFt =MF
QV
t � c bE � Nt+�P

t<s�t+�
(Zps )

2

�
: (18)

4See Bollerslev and Todorov (2009) for an alternative method of estimating the risk-neutral expectation
of jump variation, using short-maturity out-of-the-money options.

5Tri-power quartricity is computed as TPt = M��34=3

MP
ti2[t�1;t]

jrti j
4=3 ��rti�1��4=3 ��rti�2��4=3 ; where �4=3 =

22=3�
�
7
6

�
�
�
1
2

��1
and TPt ! IQt�1;t as M ! 1. Under the null hypothesis of no price jumps, ZJt is

asymptotically N (0; 1) as M ! 1. Thus, in testing whether a price jump is present on a particular day,
the ��level critical value from a standard normal distribution (Z�) applies.

6This assumption of independent jumps has been questioned of late, given the tendency for jumps to
�cluster�during certain time periods. See, for example, Aït-Sahalia, Cacho-Diaz and Laeven (2010).
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Using an Euler discretization of (2), the full model we estimate is

BVt = Vt�1;t + �BV Vt�1t (19)

MFt = E�(Vt;t+� jFt) + �MFVt�2t

= a��Vt + b
�
� + � [�v + �J ] �J + �MFVt�2t (20)

Vt = ���t+ (1� ��t)Vt��t + �v
p
�t
p
Vt��t�3t + Z

v
t�Nt (21)

with

�t = (�1t; �2t; �3t)
0 iid� N (03; I3) for all t = 1; 2; :::; T: (22)

Zvt � Exp(�v) (23)

�Nt � Bernoulli(�J�t): (24)

Setting �t = 1 in (21), the state equation for Vt describes the evolution of the point-in-time

(annualized) variance from one day to the next. It is this variance quantity at time t that

enters the function E�(Vt;t+� jFt), and contributes to the measurement error variance in (19)
and (20). We also assume that the (conditional) mean of BVt in (19) is equal to Vt, by

adopting a rectangular approximation to Vt�1;t =
R t
t�1 Vsds: The parameter � is estimated as

an annualized quantity, matching the annualized magnitude of the point-in-time variance,

Vt: The parameter � is treated as a daily quantity, measuring the rate of mean reversion in

the annualized Vt per day. In accordance with this treatment of �, � = 22 days and MFt is

modelled as an aggregated annualized variance over the trading month.

Finally, we conclude this section by acknowledging that the latent process adopted here

for Vt is short-memory, as is typical in this literature. As is now a stylized fact, time series

of measured volatility (both spot-price based and option-implied) exhibit, in contrast, long-

memory characteristics; see Andersen et al. (2003) for an early illustration. Given that

the primary focus of this paper is on producing accurate short-term (speci�cally, one-day-

ahead) forecasts, we do not view this as a problem. Indeed, anticipating the empirical

results reported in Section 5, the model-based one-day-ahead forecasts of the observable BVt
and MFt out-perform reduced-form models �tted directly to the observable quantities that

explicitly cater for the long-memory features in the latter.

3.2 A dynamic model for the jump risk premium

Carr and Wu (2009) propose a method of quantifying the variance risk premium using

variance swaps. A variance swap is an over-the-counter contract with a payo¤ equal to the

di¤erence between quadratic variation, de�ned over the life of the swap contract, and the

so-called variance swap rate, which is determined at time t:
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Setting t + � as the period at which the contract expires and denoting the price of the

variance swap as pt and its payo¤ as xt+� , the no arbitrage conditions that underlie standard

asset pricing theory imply that pt = kE�(xt+� jFt); where k is a constant (risk-neutral)
discount factor. De�ning the variance swap rate as SWt;t+� we have xt+� = QVt;t+��SWt;t+� :

Given that the variance swap has zero market value at time t, it follows that pt = 0 and

SWt;t+� = E
�(QVt;t+� jFt) (25)

as a consequence. As is consistent with the result in (14), Carr and Wu (2009) show that

SWt;t+� can indeed be synthesized by a linear combination of ��maturity option prices
observed on day t.

In addition to the equality in (25), asset pricing theory allows the zero price of the

variance swap to be linked to its payo¤ via the objective measure as

0 = E(mt;t+�xt+� jFt); (26)

where mt;t+� =Mt;t+�=E(Mt;t+� jFt) is the normalized stochastic discount factor (or pricing
kernel), with E(Mt;t+� jFt) = e�r� under the assumption of a constant risk-free interest rate.
Given that SWt;t+� is known at time t, and using E(mt;t+� jFt) = 1, (26) can be re-written
as

SWt;t+� = E(mt;t+�QVt;t+� jFt)
= E(mt;t+� jFt)E(QVt;t+� jFt) + cov(mt;t+� ; QVt;t+� jFt)
= E(QVt;t+� jFt) + cov(mt;t+� ; QVt;t+� jFt):

Dividing through by SWt;t+� , we produce an expression for the expected excess return on

the variance swap investment

E(
QVt;t+�
SWt;t+�

jFt)� 1 = �cov(mt;t+� ;
QVt;t+�
SWt;t+�

jFt):

Alternatively, we can de�ne the premium in variance payo¤ units as

E(QVt;t+� jFt)� SWt;t+� = �cov(mt;t+� ; QVt;t+� jFt);

and estimate the premium via an average of QVt;t+� � SWt;t+� :

Importantly, the above analysis highlights the fact that under the model outlined in

Section 3.1, and with a focus on integrated variance only, the conditional variance risk

premium de�ned over the maturity period � is given by the following linear function of the

12



point in time latent variance Vt;

E(Vt;t+� jFt)�
�
SWt;t+� � E�

�
Nt+�P

t<s�t+�
(Zps )

2

����Ft�� = E(Vt;t+� jFt)� E�(Vt;t+� jFt)
= a�Vt + b� � (a��Vt + b�� + ��J�J);

(27)

with the terms on the R.H.S. of (27) following from (11) and (13).7 The conditional risk

premium is also seen to be a linear function of �J , the premium for jump variance risk, and

a non-linear function of �D; the parameter in�uencing the risk premium for di¤usive risk,

�DVt: Bollerslev et al. (2011) - adopting a model that does not include variance jumps -

propose a dynamic model for �D driven by observable low-frequency macro-�nance variables.

With the link made, via a particular equilibrium model, to the risk aversion parameter of

a representative investor (referenced also in Section 5), they produce (indirectly) a model

for time-varying risk aversion. Crucially, however, the analysis of Bollerslev et al. is based

on monthly observations on option-based and realized variance measures, with conclusions

drawn about the time variation of �D also linked to the monthly frequency. In addition,

their model does not, by construction, include any premium for variance jump risk, so that

the dynamic behaviour discerned in �D may well be confounded by variance jumps.

In contrast, our focus is on high-frequency (daily) variance data, with �J an explicit

component of the speci�cation. Based on the assumption that signi�cant daily variation

in �J , most notably in response to recent observed jumps in volatility, is more plausible,

from a behavioural point of view, than daily variation in �D, we hypothesize that �J follows

7Note that the unconditional risk premium is given by

E

"
E (Vt;t+� jFt)�

 
SWt;t+� � E�

"
Nt+�P

t<s�t+�
(Zps )

2

�����Ft
#!#

= E [E (Vt;t+� jFt)� E� (Vt;t+� jFt)]
= E [(a�Vt + b� + ��v��)� (a��Vt + b�� + � (�v + �J) �J)]
= (a� � a�� )E [Vt] + (b� � b�� )� ��J�J

= (a� � a�� )
�
� +

�J�v
�

�
+ (b� � b�� )� ��J�J

= (a� � a�� ) � + (b� � b�� ) + (a� � a�� )
�
�J�v
�

�
� ��J�J

=
��D
��

�
� � 1

��

�
1� e���

�
��

| {z }
Negative if �D<0

� �J
�
[���J + (a

�
� � a� )�v]| {z }

Positive if �J>0 and �D<0 () a��>a� )

:

Hence, the unconditional mean of the aggregate risk premium (over �) de�ned in this way is negative if the
risk premia have the anticipated signs. This result corresponds correctly to the spot price-based measure,

Vt;t+� , being less, on average, than the option-price-based measure, SWt;t+� � E�
"

Nt+�P
t<s�t+�

(Zps )
2

�����Ft
#
.
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a dynamic process, whilst �D is held constant. (See also Todorov, 2010). Note, however,

that even with a constant value for �D, the di¤usive risk premium over dt, �DVtdt, is still

a dynamic process via the assumed linear relationship with Vt: On the assumption that

short memory dynamics drive �J , we specify a conditionally deterministic speci�cation that

mimics a generalized autoregressive heteroscedastic structure for volatility (Bollerslev, 1986),

namely,

�Jt = �J0 (1� �1 � �2) + �1�Jt�1 + �2lJt�1; (28)

where lJt�1 denotes the �observed�value of �Jt at time t� 1. It is this value of �Jt that feeds
into the risk-neutral expected integrated variance over the time to maturity, E�(Vt;t+� jFt),
in (20).8

Motivated by (27), we set

bE(Vt;t+� jFt)�MFt = a�Vt + b� � [a��Vt + b�� + ��Jt�J ]
and solve for the observed value of �Jt as

lJt =
[(a�Vt + b� )� (a��Vt + b�� )]�

h bE (Vt;t+� jFt)�MFti
��J

; (29)

at each point t, within the estimation algorithm. As a model-based estimate of the objective

conditional expectation, E(Vt;t+� jFt), needed to evaluate the right-hand-side of (29) at each
t, we use the following linear function of BVt,

bE(Vt;t+� jFt) = a�
a1
BVt +

�
(b� + ��v�J)�

a� (b1 + �v�J)

a1

�
, (30)

where a1 and b1 are simply those functions a� and b� in (12), evaluated at � = 1, respectively.

The estimate in (30) is unbiased for E(Vt;t+� jFt), as

E(
a�
a1
BVt +

�
(b� + ��v�J)�

a� (b1 + �v�J)

a1

�
jFt)

=
a�
a1
(a1Vt + b1 + �v�J) +

�
(b� + ��v�J)�

a� (b1 + �v�J)

a1

�
= a�Vt + b� + ��v�J

= E(Vt;t+� jFt):

From (28), (29) and (30) it is seen that �Jt is a function only of a small number of static

parameters, plus lagged values of the latent Vt and the observed BVt andMFt: This dynamic

8This speci�cation for �Jt also mimics the structure of the autoregressive conditional duration model
for durations (Engle and Russell, 1998) and the observation-driven model for count data analysed in Jung,
Kukuk and Leisenfeld (2006) and Feigen, Gould, Martin and Snyder (2008).
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speci�cation for the jump risk premium is thus advantageous from an inferential point of

view. It also has the advantage of avoiding the (potential) need to price an additional random

risk factor in the model.

4 MCMC Algorithm and Priors

Given the complexity of the state space model represented by (19) to (24) (with �J now

replaced by �Jt on day t, as modelled by (28)), the joint posterior distribution for all un-

knowns is analytically intractable. Hence, an MCMC algorithm is applied to produce draws

from the joint posterior and those draws then used to estimate inferential quantities of

interest, including predictive densities, in the usual way. To reduce notation, we de�ne

the vectors V1:t = (V1; V2; : : : ; Vt)
0, Zv1:t = (Zv1 ; Z

v
2 ; :::; Z

v
t )
0, �N1:t = (�N1;�N2; :::;�Nt)

0 ;

BV1:t = (BV1; BV2; : : : ; BVt)
0 and MF1:t = (MF1;MF2; : : : ;MFt)

0 ; for t = 1; 2; :::; T , and

with MF1:0 and BV1:0 empty. Using this notation, the joint posterior density for all un-

knowns is given by p (V1:T ; Zv1:T ;�N1:T ; �jMF1:T ; BV1:T ), where the vector of static parame-
ters is given by � = (�; �; �BV ; �MF ; �v; �D; �v; �J ; �J0; �1; �2). The joint posterior density

satis�es

p (V1:T ; Z
v
1:T ;�N1:T ; �jMF1:T ; BV1:T )

/
�
TQ
t=1

p (MFtjMF1:t�1; BV1:t�1; Vt; �; �; �MF ; �D; �v; �J ; �J0; �1; �2)

� p (BVtjVt; �BV )� p (VtjVt�1; Zvt ;�Nt; �; �; �v)
� p (Zvt j�Nt; �v)� p (�Ntj�J)]� p (�) ;

where it is assumed that V0 = �+
�v�J
�
. The conditioning ofMFt on lagged values ofMF1:t�1

and BV1:t�1 derives from the assumed structure for �Jt in (28).

The Gibbs-based MCMC algorithm is implemented in four main steps:

1. Generating V1:T from

p (V1:T jZv1:T ;�N1:T ; �;MF1:T ; BV1:T )

/
TQ
t=1

p (MFtjMF1:t�1; BV1:t�1; Vt; �; �; �MF ; �D; �v; �J ; �J0; �1; �2)

�p (BVtjVt; �BV )� p (VtjVt�1; Zvt ;�Nt; �; �; �v) ;

2. Generating Zv1:T from

p (Zv1:T jV1:T ;�N1:T ; �;MF1:T ; BV1:T ) /
TQ
t=1

p (VtjVt�1; Zvt ;�Nt; �; �; �v)� p (Zvt j�Nt; �v) ;

(T truncated normal random variables);
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3. Generating �N1:T from

p (�N1:T jV1:T ; Zv1:T ; �;MF1:T ; BV1:T ) /
TQ
t=1

p (VtjVt�1; Zvt ;�Nt; �; �; �v)� p (�Ntj�J) ;

(T Bernoulli random variables);

4. Generating � (with elements of � blocked conveniently) from

p (�jV1:T ; Zv1:T ;�N1:T ;MF1:T ; BV1:T )

/
�
TQ
t=1

p
�
MF IVt jMF IV1:t�1; BV1:t�1; Vt; �; �; �MF ; �D; �v; �J ; �J0; �1; �2

�
�p (BVtjVt; �BV ) � p (VtjVt�1; Zvt ;�Nt; �; �; �v)]� p (�) :

Obtaining draws of V1:T is the most challenging aspect of the simulation scheme, due to

the presence of the state dependent errors in (19), (20) and (21). Whilst the algorithm of

Stroud, Muller and Polson (2003) is used as the basis of our approach, we are not aware

of this algorithm having been applied to a model with multiple sources of state dependence

and a bi-variate measure. In brief, V1:T is drawn (in blocks) via a Metropolis Hastings (MH)

sub-step involving augmentation by a pair of mixture indicator vectors, one associated with

the state equation and the other associated with the bivariate measurement equation. First,

the augmentation variables are drawn from their respective full conditional distributions,

given a previously sampled value of V1:T . Then, a candidate vector eV1:T is obtained from an

approximating linear Gaussian model having error variances dependent upon the mixture

indicator vectors, using the forward �lter backward sampling (FFBS) method of Carter and

Kohn (1994) and Frühwirth-Schnatter (1994). Further details of the mixture-based algorithm

used to draw V1:T are provided in Appendix A.

The variance jumps, which occur with probability �J on any day t, shift the intercept

term in (21) by an amount Zvt , where (by assumption) a variance jump on day t occurs

contemporaneously with a price jump. Given the absence of raw price information in the

model, we introduce information on the probability of price (and variance) jumps via the

prior distribution, as follows. For a given sample period (details of which are given in Section

5) we identify the presence of signi�cant price jumps on any day t by the realizations of the

statistic described in (16) above. The prior for �J is then speci�ed as a beta distribution

with mean equal to the proportion of days throughout the sample on which signi�cant jumps

are found to occur. The variance of this distribution is used as a tuning parameter in the

algorithm.

In a similar fashion, the prior for �v is speci�ed as inverse gamma, with a mean value

proportionate to the average magnitude of

JVt � I (rt < 0) (31)

16



over the sample of days on which signi�cant large price falls are in evidence (indicated by

I (rt < 0), where rt is the daily logarithmic return), with JVt as de�ned in (17). That is, a

priori, we assume that the magnitude of the average jump in variance is some proportion of

the average magnitude of the square of negative price jumps, re�ecting the prior belief of a

negative value for the parameter (�J) relating the price and variance jumps (Eraker et al.,

2003, and Eraker, 2004). Once again, both the (a-priori) proportionate relationship between

�v and the average of the sample quantity in (31), plus the variance of the prior distribution

for �v, are viewed as tuning parameters in the algorithm.

With non-informative priors being invoked for the standard deviation parameters, �BV
and �MF , simulation of these parameters is standard, via inverted gamma distributions. The

volatility of volatility parameter, �v, is produced analogously, with the restriction �2v < 2��

ensuring the positivity of the latent variance processes. The joint prior for �, � and �D is uni-

form, subject to �� > �2v=2 and �D < 0; with the associated univariate conditional posteriors

being non-standard due to the fact that the conditional mean function in (20) is non-linear

in all three parameters. We use the structure of the model to de�ne Gaussian kernels and

produce candidate draws for each of �, � and �D with separate MH sub-steps. The para-

meters of the jump premium process are also uniform a priori, subject to �J0 > 0, �1 > 0,

�2 > 0 and �1 + �2 < 1, resulting in a joint normal posterior truncated by the inequality

constraints. Draws of the vector �J1:T = (�J1; �J2; : : : ; �JT )
0 are produced automatically

from (the degenerate) p (�J1:T jV1:T ; Zv1:T ;�N1:T ; �;MF1:T ; BV1:T ) via the conditionally de-
terministic relationship in (28), with l0 = �J0. Given the form of independent, informative

priors invoked for �v and �J (as described above), inverse gamma and beta candidates are

adopted for the respective MH sub-steps for these two parameters.

5 Empirical Application

5.1 Data description

In this section we report results of the application of the algorithm to daily variance measures

constructed from intraday spot and option price data for the S&P500 index, for the period

July 26, 1999 to December 31, 2008.9 The �rst 1961 observations (corresponding to daily

variance measures for the period July 26, 1999 to June 21, 2007) are used as the initial

dataset for estimation, with the remaining 386 observations being reserved for the evaluation

of the one-step-ahead probabilistic forecasts, based on an expanding sample window. The

evaluation period covers: the period immediately preceding the global �nancial crisis (June

9The numerical results reported in this section have been produced using the JAVA programming lan-
guage.
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22, 2007 to July 27, 2007); the early period of the crisis - during which defaults on sub-prime

mortgages began to impact on the viability of �nancial institutions and the availability of

credit (late July 2007 to August 2008); and the period of historically unprecedented high

levels of stock market volatility (towards the end of 2008). All index data has been supplied by

the Securities Industries Research Centre of Asia Paci�c (SIRCA) on behalf of Reuters, with

the raw index data having been cleaned using the methods of Brownlees and Gallo (2006).10

The raw option-implied measure (corresponding toMFQVt ) is based on the publicly available

V IX2
t , associated with day t, constructed by the Chicago Board Option Exchange (CBOE)

using the model-free methodology. See the CBOE website (www.cboe.com) for more details.

The realized bipower variation measure in (9) is based on �xed �ve minute sampling, with

a �nearest price�method used to construct arti�cial returns �ve minutes apart. Note that the

various forms of microstructure noise-adjusted measures that have appeared in the literature

have their prime motivation in the case of data on traded assets, rather than observations

on a constructed index. However, one could argue that the presence of stale prices in the

index at the point of any recorded up-date, plus the inherent discreteness in the underlying

prices, induce a form of noise. With this view we use a subsampled (or averaged) version of

the �ve-minute based measure as an additional form of noise adjustment (i.e. in addition to

sampling the observations at �xed �ve minute intervals).

In Figure 1 we reproduce plots of BVt and MFt for c = 0; 1, 1:2 and 1:5 (Panels A

to D respectively) for the full sample period. The plot of MFt in Panel A (with c = 0)

corresponds to the raw CBOE measure MFt = MFQVt = V IX2
t : The area highlighted

in grey at the end of each plot represents the period reserved for the evaluation of the

probabilistic forecasts. The empirical regularity of the option-implied variance exceeding

(in the main) the realized variance is in evidence in all panels. Despite the option-implied

measure being much less noisy than the (daily) returns-based measure, both measures exhibit

broadly similar �uctuations, with there being only a slight tendency for the peaks in MFt
to lag those in BVt: The magnitude and variability of the realized variance and the option-

implied measures increased signi�cantly during the global �nancial crisis, demonstrated here

with the sharp increase in both series towards the end of the sample. The plots in Panels

B to D show a reduction in the extreme movements in the option-implied measure, relative

to the raw measure, MFQVt , as be�ts an adjustment that removes fromMFQVt (an estimate

of) the risk neutral expectation of price jump variation. However, there is little discernible

di¤erence in the three MFt series, across the di¤erent values of c employed in adjusting the

raw MFQVt for price jump variation.

10The authors would like to acknowledge the excellent research assistance of Chris Tse in producing the
realized variance and bipower series.
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Figure 1: Plots of BVt and MF
QV
t (Panel A) and BVt and MFt for c = 1:0, 1:2 and 1:5

(Panel B, C and D, respectively).
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5.2 Empirical Estimates

In Table 1 we report the results based on estimation of the model in (19) to (24) and (28),

for the initial sample period, July 26, 1999 to June 21, 2007. Marginal posterior means

(MPM) and 95% interval estimates are calculated from 50,000 MCMC draws, following a

50,000 draw burn-in period. We report the results based on BVt and MFt for three di¤erent

values of c; c = 1:0; 1:2; 1:5: The �rst value of c implies that the risk neutral expectation

of jump variation is equivalent to the objective expectation, while the second and third

values (respectively) imply that the risk neutral expectation is 20% and 50% larger than the

objective expectation.11 Convergence of the algorithm is assessed using the visual inspection

of cumulative sum statistics; see, for example, Bauwens and Lubrano (1998).

Both point and interval estimates of the parameters are very robust overall to the value

of c. Most notably, for all values of c, the results indicate a high level of persistence in both

the latent variance process (small value of �) and the process for �Jt (high values of �1
and �2). The latter result supports the decision to model the variance jump premium as a

dynamic process and to produce distributional forecasts for this quantity. As anticipated,

the (time series) average of �Jt, �J , (as estimated here by the average of the T MCMC

draws of each �Jt) is positive, whilst the (constant) value of �D is negative. The magnitude
of �D is small, consistent with values reported by Eraker (2004), indicating a slight increase

in the persistence in volatility under the risk neutral measure. However, the magnitude of

�J is large, in particular in comparison with the estimated magnitude of the mean of the

actual variance jumps, �v, over the period. This result indicates the extreme sensitivity of

the market to this aspect of the latent variance, with the implied risk neutral expectation of

(variance) jump size (��v) being many orders of magnitude larger than the actual mean jump

size. The point (and interval) estimates of �J indicate that the probability of a variance jump

occurring on any one day ranges from approximately 2% to 5%. These magnitudes slightly

exceed those reported in previous studies (based on di¤erent model speci�cations and for

earlier sample periods), as summarized by Broadie et al. (2007), where point estimates of

the probability of variance jumps vary from 0.3% to 2%. The estimates of the mean of

the variance jumps reported in Broadie et al., �v, range from 0.018 to 0.037 (in annualized

decimal form), and are thus are slightly higher than the magnitudes for this parameter

recorded in Table 1, but are broadly consistent nevertheless.

11Note that that the a priori assumption being adopted here is that price jump premium is non-negative,
i.e. that c � 1:
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Table 1: Empirical results for the S&P500 stock index for July 26, 1999 to June 21, 2007,
based on the measures, BVt and MFt. The value of c recorded is that used in the

production of MFt in (18).

c = 1:0 c = 1:2 c = 1:5

Parameter
MPM

(95% HPD)
MPM

(95% HPD)
MPM

(95% HPD)

�
0.01706

(0.01309, 0.02091)
0.018246

(0.01386, 0.02259)
0.01707

(0.01300, 0.02110)

�
0.00881

(0.00529, 0.01215)
0.00870

(0.00542, 0.01183)
0.00885

(0.00507, 0.01249)

�v
0.00815

(0.00761, 0.00867)
0.00809

(0.00746, 0.00885)
0.00891

(0.00828, 0.00951)

�BV
0.60822

(0.58624, 0.63073)
0.59575

(0.57292, 0.61979)
0.59418

(0.57166, 0.61844)

�MF
0.26501

(0.19478, 0.46334)
0.24634

(0.18140, 0.43857)
0.24424

(0.17803, 0.43837)

�v
0.00756

(0.00597, 0.00977)
0.00868

(0.00683, 0.01110)
0.00800

(0.00633, 0.01037)

�J
0.03713

(0.02495, 0.05202)
0.03684

(0.02421, 0.05097)
0.03778

(0.02482, 0.05308)

�D
-0.00710

(-0.01727, -0.00027)
-0.00804

(-0.01876, -0.00028)
-0.00759

(-0.01765, -0.00026)

�J0
0.07668

(0.00382, 0.15897)
0.08782

(0.00446, 0.18314)
0.08129

(0.00415, 0.16924)

�1
0.38226

(0.01803, 0.87587)
0.38545

(0.01799, 0.87734)
0.38403

(0.01778, 0.87614)

�2
0.28115

(0.01148, 0.67120)
0.26495

(0.01026, 0.64011)
0.26627

(0.00997, 0.61428)

�J 0:36964 0:36047 0:34810
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5.3 Probabilistic forecasts of latent variables

Bayesian predictions of the latent variance, VT+1; and the dynamic jump risk premium,

�JT+1, are produced by estimating the (marginal) predictive densities, p(VT+1jMF1:T ; BV1:T )
and p(�JT+1jMF1:T ; BV1:T ), respectively. In the usual fashion, the marginal predictives are
estimated by taking draws from the respective conditional predictives (for VT+1 and �JT+1),

given MCMC draws of the relevant conditioning quantities. The predictive density of the

di¤usive risk premium, p(�DVT+1jMF1:T ; BV1:T ), is estimated via draws of the product,
�DVT+1; composed from the posterior draws of �D and VT+1.

Recursive forecasts of VT+1, �JT+1 and �DVT+1 (based on expanding windows) are pro-

duced over the evaluation period: June 22, 2007 to December 31, 2008. Given the robustness

of the results to the value of c (in (18)), we summarize the predictive results for c = 1:5

only. The three predictive densities are estimated using every 10th of the 50,000 draws of

all unknowns (after a 50,000 draw burn-in). The draws of � are only updated every 60 days

(approximately) throughout the evaluation period12 In Figure 2 , plots of both the marginal

predictive means and 95% predictive intervals for VT+1, �JT+1 and �DVT+1 are given respec-

tively in Panels A, B and C. As is clear, as the crisis deepens, both the level of the latent

variance itself and the premium demanded by investors for variance risk (of both the di¤u-

sive and jump type), increases. The degree of uncertainty associated with all three latent

variables, as measured by the magnitude of the prediction intervals, is also markedly larger

in the extreme crisis period, in late 2008, than in the earlier (and pre-) crisis period.

5.4 Probabilistic forecasts of observables

Using the hierarchical structure of the state space model, the Bayesian predictives for the

observable variance quantities, namely p(BVT+1jMF1:T ; BV1:T ) and p(MFT+1jMF1:T ; BV1:T ),
are estimated using the MCMC draws of all unknowns, including VT+1 and �JT+1. These

predictive distributions are summarized in Figure 3, with the observed values also displayed.

Over the full evaluation period, the empirical coverage of the 95% prediction intervals for

BVT+1 and MFT+1 are 94.82% and 92.28%, respectively, with these �gures highlighting the

accuracy with which our approach predicts the observable variance measures (most notably

the objective measure), even during the height of the �nancial crisis.

Given the current practice of producing forecasts of these measures via univariate, observation-

driven time series models, it is of interest to also compare the accuracy of our method with

such simpler alternatives. With an extensive comparative evaluation of the accuracy of al-

12The (static) parameter estimates are very robust across sub-periods, justifying this attempt to ease the
computational burden associated with the production of the forecasts.
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Figure 2: One-step-ahead predictive means and 95% predictive intervals of VT+1 (Panel A),
�JT+1 (Panel B) and �DVT+1 (Panel C) for June 22, 2007 to December 31, 2008.
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Figure 3: One-step-ahead predictive means, 95% predictive intervals and observed values of
BVt (Panel A) and MFt (Panel B) from June 22, 2007 to December 31, 2008.

ternative volatility forecasts being beyond the scope of this paper, we compare our state

space-based forecasts with forecasts from a single model only for each of BVt and MFt:

Speci�cally, for BVt we consider the heterogeneous autoregressive (HAR) speci�cation intro-

duced by Corsi (2004) and used by Andersen, Bollerslev and Diebold (2007) and Bollerslev,

Kretschmer, Pigorsch and Tauchen (2009), amongst many others,

BVt = �0 + �DBVt�1 + �WBVt�5;t + �MBVt�22;t + "t; (32)

where BVt�h;t = h�1
Ph

i=1 BVt�i. In order to best replicate typical statistical practice in the

area, we estimate this model using quasi-maximum likelihood estimation (QMLE), based

on Gaussian errors. For MFt we adopt a second-order autoregressive model for the �rst

di¤erenced series,

�MFt = �0 + �1�MFt�1 + �2�MFt�2 + �t; (33)

where �MFt = MFt �MFt�1, and a Gaussian distributional assumption is again adopted
and QMLE applied. (See Ahoniemi, 2006, for discussion of time series models for option

implied volatility).

Following Geweke and Amisano (2010), we compare the accuracy of the Bayesian mar-

ginal predictive densities for BVt and MFt; bp(BV ot jMF1:t�1; BV1:t�1) and bp(MF ot jMF1:t�1;
BV1:t�1), with that of the predictive densities produced by the competing univariate models,ep(BV ot jMF1:t�1; BV1:t�1;b�QMLE;t�1) and ep(MF ot jMF1:t�1; BV1:t�1;b�QMLE;t�1), respectively.
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Here the competing predictive densities are constructed using the QMLE of the unknown

parameter vector of the model being assessed, b�QMLE;t�1; as based on data up to and includ-

ing period t�1. To mimic the approach adopted for � in the state space model, b�QMLE;t�1 is

up-dated only every 60 days (approximately). The height of each predictive density is eval-

uated at the observed realization, BV ot or MF
o
t , over the evaluation period t = 1; 2; :::; 386,

with the cumulative di¤erence in log scores (CLS),

CLSBV =
T+386X
t=T+1

ln

" bp(BV ot jMF1:t�1; BV1:t�1)ep(BV ot jMF1:t�1; BV1:t�1;b�QMLE;t�1)

#
and

CLSMF =

T+386X
t=T+1

ln

" bp(MF ot jMF1:t�1; BV1:t�1)ep(MF ot jMF1:t�1; BV1:t�1;b�QMLE;t�1)

#
;

used to measure the relative performance of the two methods. A positive CLS value indicates

that the Bayesian marginal predictive outperforms the competitor.

Over the full evaluation period, CLSBV = 1381:05 and CLSMF = 445:34, indicating

that the state space model provides superior predictions of both BVt and MFt. Plots of

the cumulative sums of both CLSBV and CLSMF (from t = T + 1 to t = T + k, for

k = 2; 3; :::; 386) are produced in Figure 4 to gauge relative predictive performance over the

crisis period as each new observation contributes to the cumulative di¤erence in log scores.

From the plot in Panel A, it is clear that the state space model for BVt consistently dominates

the HAR speci�cation over the full sample period. In the case of the predictions of MFt;

despite the early inferior performance of the state space model, as the extreme period of

the global �nancial crisis starts to unfold towards the end of 2008, the state space model

completely dominates the simple univariate alternative, yielding the large positive value for

CLSMF for the full period.

5.5 Applications of the volatility and risk premia forecasts

Whilst the (overall) accuracy of the state space-based forecasts of the observed variance

measures themselves is certainly worthy of note, a more convincing testimony to the (pre-

dictive) worth of any model comes from its ability to produce accurate forecasts of �nancial

quantities into which volatility is an input. With this in mind, we conduct two exercises.

First, in Section 5.5.1, we use our bi-variate state space model, augmented by an additional

measurement equation based on daily returns (rt), to produce recursive predictive distribu-

tions for rT+1, from which the daily 5% and 1% VaRs are extracted. Conventional statistics

for both unconditional coverage and independence of exceedances are reported for the evalu-

ation period, and compared with corresponding statistics based on a univariate HAR model

for realized variance. Secondly, in Section 5.5.2 we document the accuracy of estimates of
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Figure 4: Cumulative sum of the CLSBV (Panel A) and the CLSMF (Panel B) for June 22,
2007 to December 31, 2008.

the settlement prices of V IX futures, as based on our state space-based forecasts of the

latent variance. In this case the comparator is a series of forecasts produced by �tting the

model in (33) to the observed V IX2
t ( = MF

QV
t ) itself. Accuracy is gauged by comparing

the empirical coverage of the relevant probability intervals with the nominal level, as well as

comparing the mean squared errors associated with the relevant point predictions.

Finally, in the spirit of that Bollerslev et al. (2011), in Section 5.5.3 predictions of the

latent variance and the variance risk premia are used to extract a sequence of one-step-ahead

predictions of the relative risk aversion of the representative agent. Whilst it is not possible

to conduct an assessment of accuracy in this case, due to the absence of �observations�on

risk aversion, it is still of interest to document this outcome of our model and to calibrate

the results with comparable results recorded in the literature.

5.5.1 Value at risk (VaR) prediction

Predicting the one-day-ahead 5% and 1% VaR for the market portfolio associated with the

S&P500 index is equivalent to calculating the 5% and 1% quantile, respectively, for the

predictive distribution for the portfolio return. Although our state space model does not

explicitly model the return, we provide a method for augmenting the inferences drawn from

the model based on the variance measures to produce, in turn, forecast distributions for

the future return. Speci�cally, draws from the posterior distribution of the volatility model,

conditional upon the spot- and option-based variance measures, are resampled to re�ect

additional conditioning on observed end-of-day returns. The model for the logarithmic price

return, rt = ln (Pt)�ln (Pt�1), conditional on (Vt; Vt�1; Zvt ;�Nt)
0 ; is based on an initial Euler
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approximation of (1),

rt =

�
�� Vt

2

�
� �

�v
(Vt � �� � (1� �)Vt�1 � Zvt�Nt)

+
�
�p + �JZ

v
t

�
�Nt +

q
Vt (1� �2) + �2p�Nt�4t; (34)

with f�4tg
iid� N (0; 1), assumed to be independent of f�3tg ; f�2tg and f�1tg in (19), (20) and

(21) respectively. In order to render the resampling method computationally e¢ cient, we

make the simplifying assumption that �2p = 0, and introduce an unknown scale parameter,

�r, absorbing all constant factors in the error variance, so that the error term in (34) collapses

to �r
p
Vt�4t: In addition, we introduce an additional regression parameter, �v, resulting in a

�nal model for returns given by

rt = �+�vVt��
�
Vt � �� � (1� �)Vt�1 � Zvt�Nt

�v

�
+�p�Nt+�JZ

v
t�Nt+�r

p
Vt�4t: (35)

Draws of V1:T ; Zv1:T ,�N1:T ; �; � and �v ; produced via the application of the MCMC algorithm

described in Section 4, are resampled (as per the description in Appendix B), with draws of

the return-speci�c parameters in (34), �; �v; �, �p; �J and �r, then produced by exploiting

the regression structure in (35) in the usual way. With standard informative priors used for

the return-speci�c parameters, the resampling method exploits the (closed-form) solution for

the marginal likelihood for the vector of returns r1:T = (r1; r2; :::; rT )0, conditional on V1:T ;

Zv1:T , �N1:T ; �; � and �v.

In Table 3 we report the empirical coverage statistics for the 5% and 1% VaR predictions

produced by our (augmented) state space approach, along with the corresponding statistics

associated with an HAR model �tted to realized variance (HAR-RV). As with the HAR

model adopted above for the bipower measure, we assume a Gaussian distribution for the

innovations and estimate the model using QMLE. We also report, for both approaches, the

p-values associated with the tests of correct unconditional coverage and independence of ex-

ceedances of the VaR (Christo¤ersen, 1998). The former test assesses whether the empirical

coverage di¤ers signi�cantly from the nominal level, while the latter tests for independence

in the sequence of returns that exceed the VaR. An acceptable series of VaR predictions

should fail to reject both of these hypotheses. Results are reported for an evaluation period

that excludes the �nal four months of 2008, and for the full evaluation period. Overall, the

state space approach provides more accurate coverage than the HAR-RV model, with em-

pirical coverages that are a good deal closer to the nominal levels than those of the HAR-RV

model. Its empirical coverages over the June 22, 2007 to August 31, 2008 period, for both

the 5% and 1% VaR, are also not signi�cantly di¤erent from their respective nominal levels

(at the 5% signi�cance level). In addition, the state space approach accurately captures
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the dynamics in returns - over both periods considered and for both VaR levels - as the null

hypothesis of independence in the exceedances is not rejected in all four cases. The HAR-RV

model, on the other hand, fails the independence test in both periods, and for both the 5%

and 1% VaR cases.

Table 3: Empirical coverage and p-values for the unconditional coverage (UC) and
independence (IND) tests for 5% and 1% VaR predictions

Excluding the extreme period
June 22, 07 to Aug 31, 08

Overall period
June 22, 07 to Dec 31, 08

State Space HAR-RV State Space HAR-RV

5%
Empirical
Coverage

7.31% 13.29% 10.10% 14.51%

VaR UC Test 0.0845 0.0000 0.0000 0.0000
IND Test 0.0619 0.0006 0.5816 0.0046

1%
Empirical
Coverage

0.33% 7.97% 2.59% 7.77%

VaR UC Test 0.1762 0.0000 0.0088 0.0000
IND Test 0.9348 0.0409 0.4652 0.0243

5.5.2 Pricing VIX futures

The Chicago Board of Exchange (CBOE) introduced trading on futures contracts based on

the V IX in March 2004. For a given futures contract with maturity date TM , the settlement

price quoted on day t, used for marking-to-market purposes, re�ects the market�s expectation

of the V IX value at the time of maturity. The square of the V IX ( =MFQV in our notation)

at time TM is, in turn, a representation of the risk neutral expectation of QVTM ;TM+� , namely,
quadratic variation over the period � dated from TM . It is thus of interest to ascertain the

degree to which a model-based prediction of
p
E� (QVTM ;TM+� jFTM ) accords with observed

settlement prices on the V IX.
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Under our assumed model,

E [E� (QVTM ;TM+� jFTM ) jFt] = E [E�(VTM ;TM+� jFTM)jFt]

+E

"
E�

 
NTM+�P

TM<s�TM+�
(Zps )

2

�����FTM
!
jFt

#
= a��E (VTM jFt) + b�� + ��J [�v + E(�JTM jFt)]

+E

"
E�

 
NTM+�P

TM<s�TM+�
(Zps )

2

�����FTM
!
jFt

#
;

whereE (VTM jFt) andE(�JTM jFt) are (TM�t)-steps-ahead point predictions of the stochastic
variance and the jump variance risk premium, respectively. These two quantities can be

obtained via our assumed models for Vt and �Jt, (21) and (28) respectively, whilst

E

"
E�

 
NTM+�P

TM<s�TM+�
(Zps )

2

�����FTM
!
jFt

#
= E

"
cE

 
NTM+�P

TM<s�TM+�
(Zps )

2

�����FTM
!
jFt

#

is produced from the univariate time series modelling of price jump variation as described

in Section 3.1), with c = 1:5 imposed.

Using posterior draws of all unknowns, draws of
p
E [E� (QVTM ;TM+� jFTM ) jFt] can be

produced for t = 1; 2; :::; 386, over the evaluation period: June 22, 2007 to December 31,

2008, for futures contracts with the closest maturity (i.e. the smallest value of TM at any

given point in time t). A point estimate of
p
E [E� (QVTM ;TM+� jFTM ) jFt] is given by the

sample mean of the draws and the 95% probability interval produced from the draws in

the usual way. As a comparator, the model in (33) is �tted to the observed V IX2
t (with a

Gaussian distributional assumption adopted for the error term) and used to produce predic-

tions of V IX. As reported in Table 4, the 95% interval constructed for the state space-based

prediction covers approximately 82% of the observed daily settlement values, whilst the

univariate time series model produces a coverage of only 66%. Further, the accuracy of

the (estimated) posterior mean of
p
E [E� (QVTM ;TM+� jFTM ) jFt] as a point predictor of the

settlement price - as measured by the mean squared error - is also superior to that of the

univariate comparator.

5.5.3 Prediction of Risk Aversion

In modelling both variance risk premia (di¤usive and jump) as dynamic processes, we are

e¤ectively modelling time variation in the risk aversion of the representative investor. In

the spirit of Bollerslev et al. (2011), we link the risk aversion parameter, , associated with

the power utility function for a representative investor, to both �DVt and �Jt: As per the

analytical demonstration in Appendix C, this leads to the following relationship between risk
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Table 4: Prediction of V IX future prices: empirical coverage of 95% prediction intervals
and mean squared error of point predictions

State Space Time Series

95% Interval
Coverage

82.12% 65.80%

Mean Squared Error 18.66 27.20

aversion in period T + 1, T+1, the two risk premia, �DVT+1 and �JT+1, and certain other

unknowns in the model,

T+1 =
�DVT+1 � �J�JT+1
��vVT+1 + �J�J�

2
v

: (36)

Thus, draws of all unknowns on the right hand side of (36) (with draws of the full set of

these unknowns, including � and �J , obtained as part of the resampling exercise in Section

5.5.1) can be used to produce draws of T+1 and those draws used, in turn, to estimate the

predictive density of T+1. Similar to the plots presented in Figure 2, a plot summarizing the

predictive distribution of T+1 is produced in Figure 5. In the earlier period, in particular,

the mean values of T+1 �uctuate around values that are broadly consistent with the range

of estimates - produced via very di¤erent means - that have been reported for this parameter

in the literature (see Cochrane, 2005 and Bollerslev et al., 2011 for some recent discussion

and documentation of these values). However, as is to be expected, given the relationship

between T+1 and the variance risk premia, the implied risk aversion of the representative

investor increases dramatically during the extreme crisis period towards the end of 2008,

together with a widening of the predictive bounds. In particular, the widening bounds can

be interpreted as an increased dispersion in the behaviour of investors during the crisis. That

is, the confusion that all investors su¤er during such a period can be seen as translating here

into uncertain estimates of the risk aversion level associated with a rational representative

investor. (See Bollerslev and Todorov, 2009, for related discussion).

6 Conclusions

This paper is the �rst to combine non-Gaussian, non-linear state space techniques with

the Bayesian inferential methodology for the purpose of producing probabilistic predictions

of objective volatility and its associated risk premia, using both option and returns-based

volatility measures. In the usual fashion, the premium for di¤usive variance risk is linear
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Figure 5: One-step-ahead predictive mean and 95% predictive interval of T+1 (the relative
risk aversion parameter for a representative investor with power utility) for June 22, 2007 to
December 31, 2008.

in the latent variance, while a conditionally deterministic process driven by a past function

of the measurements is adopted for the premium for jump variance risk. An empirical

investigation using the S&P 500 market portfolio sheds light on the changes in the predictive

distributions of the latent quantities of interest, including the latent objective variance, over

the period of the recent global �nancial crisis. Our state space approach is shown to provide

highly accurate predictive coverage over the full out-of-sample period, most notably for the

observable objective measure. Our method also yields superior predictions of the observable

measure of objective variance to those of a widely-used univariate time-series model. More

accurate predictive performance (overall) is demonstrated for the case of the option-implied

variance measure, with the predictive performance of the state space model, relative to that

of a univariate time series speci�cation, becoming completely dominant as the market itself

becomes more volatile. The accuracy with which latent volatility is predicted translates

into relatively accurate predictions of related quantities - namely the VaR on the market

portfolio and the market prices of futures written on the V IX index. Via a particular

form of representative agent model, we link the dynamic risk premia to the risk aversion

parameter, enabling probabilistic forecasts of the risk aversion of a representative investor

to be produced. Our model quanti�es the changes in investor risk aversion over the �nancial

crisis period, where, as might be anticipated, risk aversion is seen to increase dramatically

in both level and variability as the crisis deepens. Most notably, the results point to the

fact that extreme values for this behavioural parameter would have been predicted, with
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non-negligible probability, during the height of the stock market turmoil.
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Appendix A: Generation of V1:T j�;MF1:T ; BV1:T : As the state variable, Vt, appears in

the error terms of the state equation in (21) and the measurement equations in (19) and

(20), a closed form representation of the conditional posterior distribution for the stochastic

variance vector, V1:T , is not available. In this paper we extend an approach suggested by

Stroud et al. (2003) and augment the state space model with two mixture indicator vectors,

zv1:T = (zv1 ; z
v
2 ; :::; z

v
T )
0 associated with the latent variance vector, and zo1:T = (zo1; z

o
2; :::; z

o
T )
0

associated with the observed bivariate variance measure. Note that, by assumption, the

value of V0 is �xed with V0 = � + �v�J
�

and, hence, a mixture indicator variable is not

required for V0. Each component of a mixture indicator vector takes on the value of an

integer from 1 to K, and de�nes a suitable linearization of the relevant state or observation

equation. The mixture indicator vectors are then used to establish a candidate draw, within

a MH subchain, given the previously sampled latent variance vector, V1:T , conditional upon

all other parameters �, jump occasions �N1:T and variance jump sizes Zv1:T . The algorithm

essentially constructs an expanded state variable, fzv1:T ; zo1:T ; V1:Tg ; and produces MCMC
draws from p (zv1:T ; z

o
1:T ; V1:T jBV1:T ;MF1:T ;�N1:T ; Zv1:T ; �), so that after discarding the draws

of zv1:T and z
o
1:T the latent volatilities are seen as draws from the desired full conditional

posterior distribution, p (V1:T jBV1:T ;MF1:T ;�N1:T ; Zv1:T ; �).
Prior to sampling, a grid of values over the space of plausible stochastic variance values,

f�1; �2; :::; �Kg, along with a set of associated bandwidth parameters, f�1; �2; :::; �Kg, are
established. These values provide prior probability weights for the indicator elements, with

p (zvt = kjVt�1) =
��1k �

�
�k�Vt�1

�k

�
C (Vt�1)

; k = 1; 2; :::; K

and

p (zot = kjVt) =
��1k �

�
�k�Vt
�k

�
C (Vt)

; k = 1; 2; :::; K,

where � (�) denotes the probability density function for the standard normal distribution and

C (Vt) =
KX
k=1

��1k �

�
�k � Vt
�k

�
, for all t = 0; 1; 2; :::; T:

It is possible to generalize to di¤erent locations and/or bandwidth grids for each of the state

and observation indicators; however, to keep the algorithm as simple as possible we have

chosen them to be the same here. In addition, to keep the expressions uncluttered, in what

follows the requisite conditioning on fBV1:T ;MF1:T ;�N1:T ; Zv1:T ; �g has been suppressed.
The MH algorithm for the expanded state variable fzv1:T ; zo1:T ; V1:Tg proceeds as follows:
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1. Sample zv1:T given fzo1:T ; V1:Tg from T independent multinomial distributions, with

pa (zvt = kjzo1:T ; V1:T ) =
(�v�k

p
�k)

�1
�

�
Vt�E[VtjVt�1]

�v
p
�k

�
�
�
�k�Vt�1

�k

�
PK

j=1

�
�v�j

p
�j

��1
�

�
Vt�E[VtjVt�1]

�v
p
�j

�
�
�
�j�Vt�1

�j

� ;
for t = 1; 2; :::; T , where E [VtjVt�1] = �� + (1� �)Vt�1 + Zvt�Nt.

2. Sample zo1:T given fzv1:T ; V1:Tg from T independent multinomial distributions, with

pa(zot = kjzv1:T ; V1:T ) =
(�BV �MF�k�

2
k)
�1�

�
BVt�Vt
�BV �k

�
�
�
MFt�E�(Vt;t+� jFt)

�MF�k

�
�
�
�k�Vt
�k

�
PK

j=1(�BV �MF�j�
2
j)
�1�

�
BVt�Vt
�BV �j

�
�
�
MFt�E�(Vt;t+� jFt)

�MF�j

�
�
�
�j�Vt
�j

� ;
for t = 1; 2; :::; T , where E�(Vt;t+� jFt) = a��Vt + b�� + � [�v + �Jt] �J .

3. Sample eV1:T given fzv1:T ; zo1:Tg using an FFBS sampling algorithm and a candidate state
space model designed to have a smoothed state distribution that closely approximates

the smoothed state distribution of the augmented model, given fzv1:T ; zo1:Tg. The can-
didate state space model for day t = 1; 2; :::; T � 1 is given by the four dimensional
measurement equation0BB@

BVt
MFt
�zot
�zvt+1

1CCA =

2664
0

b�� + � [�v + �Jt] �J
0
0

3775+
2664
1
a��
1
1

3775Vt + �t;

�t � N

0BBB@
0BB@
0
0
0
0

1CCA ;
26664
�2BV �

2
zot

0 0 0

0 �2MF�
2
zot

0 0

0 0 �2zot 0

0 0 0 �2zvt+1

37775
1CCCA ;

and, for day t = T; the trivariate measurement equation0@ BVT
MFT
�zoT

1A =

24 0
b�� + � [�v + �JT ] �J

0

35+
24 1
a��
1

35VT + �T ;
�T � N

0@0@ 0
0
0

1A ;
24 �2BV �2zoT 0 0

0 �2MF�
2
zoT

0

0 0 �2zoT

351A :
The candidate state space model uses the scalar state equation

Vt = (1� �)Vt�1 + (�� + Zvt�Nt) + !t; !t � N
�
0; �2v�zvt

�
;

for all t = 1; 2:::; T; with V0 = � +
�v�J
�
.
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4. Accept eV1:T with probability determined by the MH acceptance rule
min

(
1;

TY
t=1

"
C(Vt�1)p

a(VtjVt�1)p(eVtjeVt�1)C(Vt)pa(BVt;MFtjVt)p(BVt;MFtjeVt)
C(eVt�1)pa(eVtjeVt�1)p(VtjVt�1)C(eVt)pa(BVt;MFtjeVt)p (BVt;MFtjVt)

#)

where V1:T denotes the previous draw in the Markov chain,

pa (VtjVt�1) = C (Vt�1)
�1

KX
k=1

��
�k�v

p
�k

��1
��
�
Vt � (�� + Zvt�Nt)� (1� �)Vt�1

�v
p
�k

�
�

�
�k � Vt�1
�k

��
;

and

p (VtjVt�1) =
�
�v
p
Vt�1

��1
�

�
Vt � (�� + Zvt�Nt)� (1� �)Vt�1

�v
p
Vt�1

�
;

and similarly,

pa(BVt;MFtjVt) = C (Vt)
�1

KX
j=1

�
�BV �MF�j�

2
j

��1
�

�
BVt � Vt
�BV �j

�
��
�
MFt � E�(Vt;t+� jFt)

�MF�j

�
�

�
�j � Vt
�j

��
;

and

p(BVt;MFtjVt) =
�
�BV �MFV

2
t

��1
�

�
BVt � Vt
�BV Vt

�
�

�
MFt � E�(Vt;t+� jFt)

�MFVt

�
:

5. Discard zv1:T and z
o
1:T .

Appendix B: Sampling/Importance Resampling from the Augmented State Space
Model Given the speci�cation for returns in (35), the joint posterior density for all un-

knowns, conditional on the three vectors of observed data, r1:T ; MF1:T ; and BV1:T , can be

decomposed as follows

p
�
�; �v; �; �p; �J ; �r; V1:T ;�N1:T ; Z

v
1:T ; �jr1:T ;MF1:T ; BV1:T

�
/ p

�
�; �v; �; �p; �J ; �r; jr1:T ; V1:T ;�N1:T ; Zv1:T ; �; �; �v

�
�p (r1:T jV1:T ;�N1:T ; Zv1:T ; �; �; �v)
�p (V1:T ;�N1:T ; Zv1:T ; �jMF1:T ; BV1:T ) : (37)

In order to sample from (37), we �rst draw from p (V1:T ;�N1:T ; Z
v
1:T ; �jMF1:T ; BV1:T ) using

the MCMC algorithm for the volatility model as described in Section 4. Then, given the
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vector of observed returns, r1:T ; and using the draws of (V1:T ;�N1:T ; Zv1:T ; �; �; �v), a draw

is produced from the candidate density,

q
�
�; �v; �; �p; �J ; �r; V1:T ;�N1:T ; Z

v
1:T ; �

�
/ p (V1:T ;�N1:T ; Zv1:T ; �jMF1:T ; BV1:T )

�p
�
�; �v; �; �p; �J ; �rjr1:T ; V1:T ;�N1:T ; Zv1:T ; �; �; �v

�
: (38)

Under a standard Gaussian-inverse gamma g�prior framework (Zellner, 1986), the return-
speci�c parameters, �; �v; �; �p; �J ; and �r, are sampled from the resulting Gaussian-inverse

gamma posterior, conditional upon the draws of the latent variables, V1:T ;�N1:T ; Zv1:T , and

the static parameters contained in �, speci�cally �; � and �v: Given that, up to a constant

of proportionality, the candidate density in (38) di¤ers from the target density (37) only

by the factor p (r1:T jV1:T ;�N1:T ; Zv1:T ; �; �; �v), a feasible sampling/importance resampling
(SIR) algorithm (Smith and Gelfand, 1992) to correct the initial draws is implemented, so

that a sample from the joint posterior distribution in (37) is obtained. Crucially, given the

assumed structure of (35), including the assumption of normality for the innovations, and the

use of a conjugate prior structure, p (r1:T jV1:T ;�N1:T ; Zv1:T ; �; �; �v) is known in closed form.
Hence, given M available draws of (V1:T ;�N1:T ; Zv1:T ; �; �; �v) from the MCMC algorithm,

the draws are resampled from the discrete distribution de�ned by the weights

w(i) =
p
�
r1:T jV (i)1:T ;�N

(i)
1:T ; Z

v(i)
1:T ; �

(i); �(i); �
(i)
v

�
MX
k=1

p
�
r1:T jV (k)1:T ;�N

(k)
1:T ; Z

v(k)
1:T ; �

(k); �(k); �
(k)
v

� , i = 1; 2; :::;M:

The reweighted draws of V1:T ;�N1:T ; Zv1:T ; �; �; �v are used to produce draws from

p
�
�; �v; �; �p; �J ; �rjr1:T ; V1:T ;�N1:T ; Zv1:T ; �; �; �v

�
. Each draw of the full set of unknowns

is then used to produce the conditional (Gaussian) predictive distribution for rT+1. The

(marginal) predictive, p(rT+1jr1:T ;MF1:T ; BV1:T ) is produced by averaging the conditional
predictives in the usual way.

Appendix C: Transformation to Risk Aversion The equilibrium frameworks of Bree-

den (1979) and Cox, Ingersoll and Ross (1985) lead to factor risk premiums that are equal

to the negative of the covariance between changes in the factor and the rate of change in the

marginal utility of wealth. For the SVCJ model adopted here, this implies that

(�DVt � �J�J) dt = �cov
�
dwt
wt
; dVt

�
; (39)

where dVt = dV dt + dJ
v
t , with dV

d
t = �[� � Vt]dt + �v

p
VtdB

v
t representing the di¤usive

component of the volatility process. Thus, the variance risk premium can be decomposed

40



into the di¤usive variance risk premium

�DVtdt = �cov
�
dwt
wt
; dV dt

�
(40)

and the jump variance risk premium,

��J�Jdt = �cov
�
dwt
wt
; dJvt

�
; (41)

where wt denotes the marginal utility of wealth for the representative investor. Following

Bollerslev et al. (2011), we adopt the canonical power utility function,

Ut = e
��tW

1�
t

1�  ;  > 0,

where � denotes the constant subjective discount rate and  is the risk aversion parameter,

from which it follows that,

wt = e
��tW�

t :

Proxying wealth by the value of the market portfolio and recognizing that, in our empirical

setting, the price process in (1) refers to a market stock index, Ito�s lemma yields

dwt =
@wt
@Pt

dPt +
@wt
@t
dt+

1

2

@2wt
@P 2t

(dPt)
2

=
�
�P��1t e��t

�
dPt +

�
 (1 + )P��2t e��t

�
(dPt)

2

= �P�1t wtdPt +  (1 + )P
�2
t wt (dPt)

2 ;

that is,
dwt
wt

= �P�1t dPt +  (1 + )P
�2
t (dPt)

2 : (42)

Substituting (42) into (40) gives the following relation

�DVtdt = �cov
�
�P�1t dPt +  (1 + )P

�2
t (dPt)

2 ; dV dt
�

= P�1t cov
�
dPt; dV

d
t

�
�  (1 + )P�2t cov

�
(dPt)

2 ; dV dt
�

= P�1t cov
�
dPt; dV

d
t

�
, since cov

�
(dPt)

2 ; dV dt
�
= 0;

which implies that

�D = ��v: (43)

Similarly, substituting (42) into (41) yields

�J�Jdt = cov
�
�P�1t dPt +  (1 + )P

�2
t (dPt)

2 ; dJvt
�

= �P�1t cov (dPt; dJ
v
t ) , since cov

�
(dPt)

2 ; dJvt
�
= 0;
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which implies that

�J�J = ��J�J�2v: (44)

Finally, substituting (43) and (44) into (39) and solving for ; we obtain

 =
�DVt � �J�J
��vVt + �J�J�

2
v

:

We are, of course, adopting a dynamic model for �J ; which, combined with dynamics of the

stochastic variance Vt; implies a dynamic model for :
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