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all" test. We specify a test based on a linear combination of individual components of the
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model, and is expected to have power against a wide class of alternatives. Although primarily
envisaged as a test of functional form, this type of moment test can also be extended to testing
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1 Introduction

Speci�cation testing of econometric models frequently faces the di¢ culty that the investigator
does not know what type of speci�cation error to look for. Tests of functional form need to have
power against a bewildering variety of possible alternatives. To compute tests of the Lagrange
multiplier and Durbin-Hausman-Wu types one needs to specify, and in the latter case to esti-
mate, a dummy alternative hypothesis. Authors such as Davidson and MacKinnon (1981) have
documented how test power can depend critically on the alternative chosen to construct the test.
There are always some alternatives against which a test will lack even consistency.

A general class of tests, of which most speci�cation tests can be constructed as special cases,
are the conditional moment tests of Newey (1985) and Tauchen (1985). The sample mean of a
function depending on data and parameters is constructed, of which the population mean is zero
under the null hypothesis. Typically, in applications the quantity in question is the product of
model residuals, or normalized squared residuals, with a test indicator function (weighting func-
tion) depending on conditioning variables. Even though they are not typically constructed with
a speci�c alternative in mind, these tests are generally not �consistent�, in the sense of rejecting
the null hypothesis in a large enough sample against any deviation from the null model. Their
power against speci�c alternatives depends on the choice of the weighting functions. However,
Bierens (1982,1990) has suggested consistent model speci�cation tests. By the use of an expo-
nential weighting function these statistics in e¤ect test an in�nite set of moment conditions, in
the context of linear or nonlinear least squares estimation. In the time series case, generalizations
have been proposed by Bierens (1984, 1987), de Jong (1996) and Bierens and Ploberger (1997)
with the latter generalizing a version of the integrated conditional moment test of Bierens (1982).
Furthermore, Whang (2000, 2001) and Delgado, Dominguez and Lavergne (2006) propose consis-
tent tests in an i.i.d. context by using an indicator function instead of the exponential weighting
function of Bierens. The former tests are generalizations of both the Kolmogorov-Smirnov and
Cramer-von-Mises statistics, whereas the latter authors consider only the Cramer-von Mises type
test. Escanciano (2007) provides a uni�ed theory for both continuous and discontinuous weighting
functions using residual marked empirical processes in order to detect misspeci�cations in time
series regression models. In semiparametric dynamic models, Chen and Fan (1999) extend the
Bierens (1990) approach to testing conditional moment restrictions using the weighted integrated
squared metric.

Another approach for constructing consistent tests of functional form is by comparing the
�tted parametric regression function with a nonparametric model. Some examples of such tests
for i.i.d. data have been proposed by Zheng (1996), Eubank and Spiegelman (1990), Härdle and
Mammen (1993), Hong and White (1996), Fan and Li (1996a), inter alia, whereas for time series
developments include Fan and Li (1996b), Koul and Stute (1999) and Dominguez and Lobato
(2003). Although these tests are consistent against all alternatives to the null hypothesis, they
have nontrivial power only under the local alternatives that approach the null at a rate slower
than T�1=2 which decreases as well due to the curse of dimensionality, where T is the sample
size. Further, such tests depend on a smoothing parameter whose choice is not trivial and this
will in�uence the results.

The idea that we develop in this paper is to generalize Bierens�approach to a much wider class
of models and estimators. Our framework extends to cover all variants of maximum likelihood and
quasi-maximum likelihood estimation and also the generalized method of moments. Parameter
estimation is done in these cases by solving the equations obtained by equating to zero a set of
functions of data and parameters, which we refer to generically as the scores. In a sample of
size T these functions consist of sums of T terms, the �score contributions�, that sum to zero by
construction at the estimated point. The rationale for the choice of the estimator, in each case, is
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that under the hypotheses of the model the score contributions evaluated at the �true�parameter
values have individual means of zero, conditional on a designated set of conditioning variables,
with probability 1.1 Here, �true�may mean that economic theory assigns a speci�c interpretation
to the parameter values, or simply that these are the values that solve the respective equations
when our maintained hypotheses hold. In the latter case it may be strictly more correct to speak
of an �adequate�model speci�cation than a correct one, and under this interpretation we may
sometimes prefer to call these the �pseudo-true�values. The minimal requirement, trivial with
i.i.d. data, is that the same set of values characterize each observation in the sample.

In either case, our object is consistent estimation of the parameters satisfying the condition.
Our maintained hypotheses typically include a list of included variables and a functional form
and, most importantly, the designation of the variables that can be validly treated as �xed in
forming conditional expectations, which we henceforth refer to as �exogenous�. This exogeneity
property is related to, though not identical with, the weak exogeneity condition de�ned by Engle,
Hendry and Richard (1983). Note that it depends on the interpretation of the model and is not
a condition subject to veri�cation in the data.

Under correct speci�cation, so de�ned, it follows that functions of the exogenous variables
should be uncorrelated with the score contributions. Since the scores are frequently represented
as the sum of products of a residual and another function of the data, where correct speci�cation
imposes a special property on the residual, we often think of these moment tests as tests of the
residuals. However, there are important classes of models for which a residual may not be well, or
uniquely, de�ned. For these cases, speci�cation tests can be developed directly in terms of score
contributions. This framework may be particularly useful for developing consistent speci�cation
tests in particular cases, such as discrete choice models, but the chief appeal of our approach is
the "one size �ts all" principle. We specify a test based on a linear combination of individual
components of the indicator vector, that can be computed routinely and does not need to be
tailored to each particular model, and yet will have power against a wide class of alternatives.
Although primarily envisaged as a test of functional form, this type of moment test can be
extended to testing for omitted variables by de�ning the weighting functions appropriately. The
present work focuses on the case of independently distributed observations. A companion paper
will consider the extension to tests of dynamic speci�cation.

The paper is organized as follows, Section 2 brie�y recounts the Bierens framework for con-
structing a consistent test of functional form of the mean equation. Section 3 develops a consistent
speci�cation test based on the score approach. In Section 4.1, we present Monte Carlo evidence
on a variety of likelihood-based applications including nonlinear and heteroskedastic regressions,
discrete choice and count data models. Section 4.2 then looks at the application to models with si-
multaneity, and instrumental variables estimation, and Section 5 concludes the paper. All proofs,
together with some supporting lemmas, are collected in the Appendix.

2 The Bierens�framework

Consider the following model indexed by � 2 � � Rk

yt = m(xt; �) + "t (2.1)

where for each � 2 �, m (�) is a known Borel measurable real valued function of the (k � 1)
vector of regressors xt: f(x0t; "t)g is a sequence of i:i:d: random vectors. The null hypothesis of

1This statement may need qualifying in the GMM case, as we explain in Section 5 below.
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correct speci�cation of the model in (2.1) is

P (E [ytjxt] = m (xt; �0)) = 1 for some �0 2 � (2.2)

whereas the alternative hypothesis is

P (E [ytjxt] = m (xt; �)) < 1 for all � 2 �:

Tests of the null hypothesis in (2.2) have been constructed based on the correlation of the least
squares residuals with a function of the data. These are often characterized as conditional moment
tests, as in Newey (1985) and Tauchen (1985).

Let the unknown parameter �0 be estimated by the least squares estimator

�̂ = argmin
�2�

T�1
TP
t=1
(yt �m (xt; �))2 :

The Bierens�(1990) consistent speci�cation test of functional form is based on the proximity to
zero of the indicator function

rT (�̂; �) =
1

T

TX
t=1

"̂tw (xt; �) ; (2.3)

where "̂t = yt �m(xt; �̂) is the residual process and wt = w (xt; �) is a nonlinear transformation
of the regressors where � 2 � with � a compact subset of Rk.

Conditioning on xt is equivalent to conditioning on any Borel-measurable isomorphic function
of xt (see, e.g., Davidson, 1994, Theorem 10.3) such that the function will generate the same �-
�eld as xt. Bierens (1982, 1990) suggests using the weight function

w (xt; �) =
kQ
i=1
exp (�i' (~xti)) (2.4)

where ' is a one-to-one mapping from R to R chosen by Bierens (1990) as ' (~xti) = arctan ~xti;
for i = 1; ::; k where ~xti are in the standardized form

~xti =
xti � �xi
si

with �xi and si representing the sample mean and sample standard deviation of xti; respectively,
to avoid the problem of the weight function being invariant due to scale factors. The choice of
the exponential in the weight function (2.4) is not crucial. As shown by Stinchcombe and White
(1998) any function that admits an in�nite series approximation on compact sets, with non-zero
series coe¢ cients, could in principle be employed to construct a consistent test.

Under the null hypothesis and standard regularity conditions, taking a mean value expansion
of
p
TrT (�̂; �) around �0, Bierens (1982, 1990) shows that

p
TrT (�̂; �) =

1p
T

TP
t=1

"0t�t (�) + op (1)

uniformly over �; where "0t = yt �m (xt;�0) and

�t (�) = w (xt; �)� b (�)0A�1
@m (xt; �)

@�0

����
�=�0

b (�) = E

�
@m (xt; �)

@�0
w (xt; �)

�
�=�0
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A = E

�
@m (xt; �)

@�

@m (xt; �)

@�0

�
�=�0

:

Bierens (1990) shows that under the null hypothesis (2.2),
p
TrT (�̂; �) converges weakly in

distribution to a zero-mean Gaussian process on �; with covariance function

�(�1; �2) = E["2t�t (�1)� (�2)]�=�0 : (2.5)

The Bierens test based on the sample moment (2.3) with the weight function in (2.4) entails an
in�nite number of moment conditions. The consistency of the test is based on the result shown
in Lemma 1 of Bierens (1990), that under the alternative hypothesis and speci�ed regularity
conditions,

E [(yt �m(xt; �0))w (xt; �)] = 0 (2.6)

only when � belongs to a set of Lebesgue measure zero. Consistency can therefore be achieved
with a suitable choice of �. If � is chosen from a continuous distribution, the moment in (2.6)
will be non-zero with probability one. The Bierens (1990) test statistic is constructed as

B̂ = sup
�2�

B (�) (2.7)

where

B (�) =

�p
TrT (�̂; �)

�2
�̂� (�)

with �̂� (�) a consistent estimator of �� (�) = � (�; �) de�ned in (2.5): A similar statistic to the
time series case have been developed by de Jong (1996) in which � grows in dimension to in�nity
with the sample size. Another choice for the construction of a consistent test for functional form
of the conditional mean equation is the Cram·er-von-Mises functional as suggested by Bierens
(1982) and Bierens and Ploberger (1997)2 .

The Bierens test is speci�cally designed for possible nonlinear models estimated by nonlinear
least squares. However, this test can also be constructed in the conditional moment test frame-
work, and QMLE applied to obtain a consistent estimator of �0: Nevertheless, the consistent tests
of Bierens (1982, 1990) and Bierens and Ploberger (1997) are not designed against misspeci�ca-
tion in second moments, and are suitable only for models for which a properly de�ned residual
is available. There are important cases, such as discrete choice models, where there is no unique
generalization of a test based on residuals. However, speci�cation tests for such models are often
constructed based on a suitable de�ned score, and it is from this approach that we take our cue
in the next section.

3 A consistent test based on the score contributions

Bierens�procedure is an application of the conditional moment test principle in which the prop-
erty of the regression residuals of having zero conditional mean in the true model is exploited.
There may be other functions available to which the same property can be attributed. However,

2Bierens (1982) constructs a consistent test as
R
�
T̂B (�) d� but could not establish the type of the limiting

distribution, but only its �rst moment. He derives upper bounds of the critical values based on the Chebyshev�s
inequality for �rst moments. Bierens and Ploberger (1997) obtain the limiting distribution of the integrated condi-
tional moment test and since the critical values depend on the data generating process, they derive case-independent
upper bounds of the critical values.
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functions that exist for virtually any parametric model are the scores of the estimation criterion.
In this section we propose a consistent speci�cation test applicable to a very general class of
continuous distributed models.

Consider independently sampled variables (y0t; z
0
t)
0, where yt (G� 1) is a vector of dependent

variables and zt (K � 1) is a vector of exogenous variables. De�ning for k � K a subvector xt
(k�1) of zt, where xt = zt is possible, our parametric model can be taken as de�ned by a p-vector
of functions dt(�) = d (yt; xt; �) for � 2 � � Rp, such that there exists a vector of parameters of
interest �0 2 int(�) satisfying

E [dt (�0) jzt] = 0 w.p.1 (3.1)

In many cases we shall of course have that dt = @lt=@� where lt (�) is a log-likelihood contribution,
or similar, satisfying the condition that E [lt (�) jzt] is maximized at �0 with probability 1, subject
to regularity conditions ensuring that (3.1) holds. Given a sample of data indexed by t = 1; : : : ; T ,
we accordingly expect to estimate �0 consistently by

�̂ = argmax
�2�

LT (�)

where LT (�) =
PT

t=1 lt (�) represents the appropriate sample criterion function. Accordingly the
estimate �̂ is constructed as a solution to

1

T

TP
t=1

dt(�̂) = 0: (3.2)

We shall refer to the components dt generically as the score contributions, although note that �0
could be de�ned directly by an orthogonality condition in which case estimation would be done
by the method of moments. We shall subsequently (see Section 4.2) consider models where dt
depends on the full sample and hence is strictly an array, and (3.1) is valid asymptotically but
not necessarily for �nite T:

Note that in this context, exogeneity of zt is de�ned by the condition that �0 satis�es (3.1)
almost surely, and in this sense it is a condition de�ned by the interpretation of the model. Our
correct speci�cation condition does not entail that the conditioning variables need to be used
to construct the criterion. When k < K, condition (3.1) embodies the assumption of correct
exclusion from the model of some valid conditioning variables. zt may include any exogenous
variable that may legitimately contribute to the explanation of yt, and this set could in principle
be very large, although our procedure puts limits on it in practice. This allows us to consider
problems of omitted variables, although the case xt = zt would apply in many cases where the
speci�cation issue relates solely to functional form.

Following the approach of Bierens (1982, 1990), the null hypothesis of correct speci�cation
might be stated in the form

P (E [dt (�0) jzt] = 0) = 1 for t = 1; ::; T (3.3)

with alternative hypothesis

P (E [dt (�) jzt] = 0) < 1, for all � 2 � and at least one t. (3.4)

Be careful to note that we de�ne a �consistent test� in terms of rejections when (3.4) holds.
However, we cannot entirely rule out the possibility that, even in certain cases that we might
wish to call misspeci�cation, (3.3) remains true. To take a leading example, in the continuous
data case, the null hypothesis is generally satis�ed even if the true distribution is not the one
assumed for constructing the criterion function, as when the test is based on the quasi-likelihood
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function. In fact, we see this feature of our test as advantageous. It is arguably a desirable feature
that deviations from the true distribution of the data are not detected as long as the estimators
are consistent and asymptotically normal. A parallel case exists in the class of count data models
to be discussed in Section 4.4. We �nd cases where the null hypothesis in (3.3) is true in spite
of misspeci�cation of the distribution as a whole, such that the Poisson distribution de�nes a
quasi-maximum likelihood estimator; see Gourieroux, Montfort and Trognon (1984).

We test (3.3) by a conditional moment test on the covariance between these score contributions
and a suitable measurable function of exogenous variables. Noting that �̂ is de�ned by (3.2), our
test indicator is

sT (�̂; �) =
1

T

TX
t=1

dt(�̂)wt (�) (3.5)

where wt(�) = w (zt; �) is the weight function in (2.4) and � 2 � with � a compact subset of RK .
The following assumptions constitute the maintained hypothesis, in which context we derive

our tests. Throughout this paper, k�k denotes the Euclidean norm of a vector or matrix.

Assumptions

1. The observed data (y0t; z
0
t)
0, t = 1; ::; T , form a sequence of independently distributed random

variables.

2. The parameter space � is a compact subspace of Rp.

3. dt (�) : RG+k � � 7�! Rp is a Borel measurable function for each � 2 � and continuously
di¤erentiable on �.

4. For all t and some s > 0, the following are bounded uniformly in t,

(i) E
h
sup�2� kdt(�)k2(1+s)

i
;

(ii) E
h
sup�2�;�2� kdt(�)wt (�)k2(1+s)

i
;

(iii) E
h
sup�2�

@dt(�)=@�01+si ;
(iv) E

h
sup�2�;�2�

@dt(�)=@�0wt (�)1+si.
5. The matrix

M = � lim
T!1

1

T

TP
t=1

E
�
@dt(�)=@�

0�
�=�0

(3.6)

is �nite and non-singular;

6. Under the null hypothesis,
p
T (�̂ � �0)

d! N
�
0;M�1�M�1� ; where M is de�ned in (3.6)

and

� = lim
T!1

1

T

TX
t=1

E
�
dt(�)dt(�)

0�
�=�0

<1: (3.7)

The following lemmas will provide the basis for the consistent test.

Lemma 3.1 If P (E [dt(�)jzt] = 0) < 1, then the set

B =
�
� 2 RK : E [dt (�)wt (�)] = 0

	
has Lebesgue measure zero for any � 2 �:

7



Lemma 3.2 Under Assumptions 1-6 and H0 in (3.3)

1p
T

TX
t=1

dt(�̂)wt(�)
d! N (0; V (�))

pointwise in the set of �; where

V (�) = R (�)�Q (�)M�1P (�)0 � P (�)M�1Q (�)0 +Q (�)M�1�M�1Q (�)0 (3.8)

and

Q (�) = lim
T!1

1

T

TX
t=1

E

�
�wt(�)

@dt(�)

@�0

�
�=�0

(3.9)

P (�) = lim
T!1

1

T

TX
t=1

E
�
wt(�)dt(�)dt(�)

0�
�=�0

(3.10)

R (�) = lim
T!1

1

T

TX
t=1

E
�
wt(�)

2dt(�)dt(�)
0�
�=�0

: (3.11)

The covariance matrix V (�) in (3.8) can be consistently estimated by

V̂ (�) = R̂ (�)� Q̂ (�) M̂�1P̂ (�)0 � P̂ (�) M̂�1Q̂ (�)0 + Q̂ (�) M̂�1�̂M̂�1Q̂ (�)0 (3.12)

where hats denote evaluation at the consistent estimator �̂.

Assumption 7 The set B� =
�
� 2 RK : rank (V (�)) < p

	
has Lebesgue measure zero.

Subject to Assumption 7, a joint consistent speci�cation test can be constructed based on
the test indicator sT (�̂; �) de�ned in (3.5) that takes into account all the components of the score
vector. This is as follows

SB(�) =
1

T

 
TX
t=1

dt(�̂)wt(�)

!0
V̂ (�)�1

 
TX
t=1

dt(�̂)wt(�)

!
: (3.13)

Note that V (�) should have rank p under the same circumstances that � has rank p for all
� except on a set of Lebesgue measure zero. Provided that xt is a linearly independent set of
variables, the case � = 0 appears to be the unique counter-example under which we should obtain
V (�) = 0.

The asymptotic distribution of the joint test statistic in (3.13) for each � is established in the
following Theorem.

Theorem 3.1 For every � 2 RK=B0[B�; where B0 is the set de�ned in Lemma 3.1 for the case
� = �0, and B� is the set de�ned in Assumption 7, the joint test SB (�) in (3.13) under H0 in
(3.3) has a limiting chi-square distribution with p degrees of freedom, whereas under H1 in (3.4),
SB (�) =T ! q (�) a.s.; where q (�) > 0:

One way to implement this test would be to choose the vector � arbitrarily, but following the
approach of Bierens (1990) we anticipate the greatest power would be obtained by considering
the statistic

ŜB = sup
�2�

SB (�) : (3.14)
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Where zt is a vector, the choice of � will determine the relative weights assigned to the explanatory
variables, but notice that even in the case k = 1, wt depends nonlinearly on zt in a manner
depending on the scalar value of � in that case. Therefore, with a view to optimizing power, we
perform the optimization in joint tests even for the case K = 1.

The following theorem is used in establishing the limiting distribution of ŜB. Let C (�) denote
the metric space of real continuous functions endowed with the uniform metric

sup
�2�

kz1 (�)� z2 (�)k :

Theorem 3.2 Under H0 and Assumptions 1-7,
p
TsT (�̂; �), de�ned in (3.5), converges weakly

to a mean-zero Gaussian element z (�) of C (�) with covariance function

E
�
z (�1) z (�2)

0� = V
�
�1;�2

�
where

V (�1; �2) = R (�1; �2)�Q (�1)M�1P (�2)
0�P (�1)M�1Q (�2)

0+Q (�1)M
�1�M�1Q (�2)

0 (3.15)

and R (�1; �2) = lim
1
T

PT
t=1E [dt(�)dt(�)

0wt (�1)wt (�2)]�=�0, R (�; �) = R (�) :

Note that under the hypothesis of a correctly speci�ed likelihood function, we have the infor-
mation matrix equality M = �. Therefore, we remark on the possibility that the test might be
modi�ed for this restricted version of the null hypothesis by imposing this equality in the variance
formula. However, this is not an option we shall consider here.

Since sup�2� (�) is a continuous functional of
p
TsT (�̂; �), it follows by the continuous mapping

theorem that under H0
ŜB

d! sup
�2�

z (�)0 V (�)�1 z (�) :

The limiting distribution of the joint test statistic ŜB depends on the data generation process and
the speci�cation under the null and thus critical values have to be tabulated for each DGP and
estimation model which is unfeasible given the general framework of our test statistic. However,
an approximate limiting distribution can be obtained by applying the following approach of
Bierens (1990).

Lemma 3.3 Under Assumptions 1-7, choose independently of the data  > 0, 0 < � < 1 and
�0 2 �. Let �̂ = argmax�2� SB (�) and

~� =

(
�0 if ŜB � SB (�0) � T �

�̂ if ŜB � SB (�0) > T �
(3.16)

Then, under H0; ~SB = SB(~�) will have an asymptotic �2 distribution with p degrees of freedom,
whereas under H1, ~SB=T ! sup�2� q (�) a.s. as T !1, where sup�2� q (�) > 0:

The approach of basing the test on the pair of statistics SB (�0) and sup� SB (�), depending
on the discrimination device in (3.16) o¤ers the real attraction of being able to use a standard
table for implement the test. Alternative methods such as the bootstrap, although feasible, are
clearly unattractive for routine applications. An alternative to the formulation in (3.14) is the
integrated moment test investigated by Bierens and Ploberger (1997). This involves constructing
the statistic as the integral of the function SB (�) with respect to a suitable measure de�ned for �.
This approach clearly deserves consideration, but the computational overhead of implementing
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such procedures by the bootstrap appear to us to make it unlikely such methods will �nd favour
with practitioners, however cheap computing power may become.

In addition to this test of joint restrictions, there are also various ways of examining the
information contained in the indicator to yield consistent tests. In general, a principle we could
adopt is to construct a one degree of freedom test based on a linear combination of individual
components of the indicator vector sT (�̂; �) in (3.5). This approach may prove to give power in
particular directions. For �xed � 2 �, and a vector of weights � 2 Rp, a composite test statistic
can be constructed as

SBc (�; �) =

�
1p
T

PT
t=1 �

0dt(�̂)wt(�)
�2

�0V̂ (�) �
; (3.17)

where � 2 H = f� 2 Rp : k�k = 1g without loss of generality, since any scale factor cancels in
the ratio. If the interest is in distinguishing between di¤erent types of misspeci�cation (e.g.,
misspeci�cation that occurs in the mean or variance equations of a regression model), individual
test statistics can be constructed as a special case of (3.17) by setting � to a column of Ip. In
this case, the test statistic is constructed as

SBi (�) =

1
T

�PT
t=1 dt;i(�̂)wt (�))

�2
V̂ii (�)

(3.18)

where dt;i(�̂) =
@ ln f (yjx; �)

@�i

����
�=�̂

, for i = 1; :::; p, and V̂ii (�) is the ith diagonal element of V̂ (�)

given in (3.12). Thus, the individual tests are de�ned for i = 1; : : : ; p as

ŜBi = sup
�2�

SBi (�) : (3.19)

The limiting distributions of tests speci�ed by (3.17) is given in the following Theorem.

Theorem 3.3 Under Assumptions 1-7, for every � 2 RK=B0 [ B�; where B0 is the set de�ned
in Lemma (3.1) for the case � = �0 and B� is the set de�ned in Assumption 7, and � 2 H, the
composite test SBc (�; �) has a limiting chi-square distribution with one degree of freedom under
H0 in (3.3), whereas under H1 in (3.4), SBc (�; �) =T ! q (�; �) a.s.; where q (�; �) > 0:

Almost any choice of � and � will yield some power to detect misspeci�cation. However, the
composite test can be constructed in a similar way to the method proposed in Bierens (1990)
leading to the statistic

ŜBc = sup
 2	

SBc ( ) (3.20)

where  =
�
�0; �0

�0, 	 = ��H and SBc ( ) = SBc (�; �) is de�ned in (3.17).
The following theorem, analogous to Theorem 3.2, is used to establish the limiting distribution

of the test in (3.20). Let C (	) denote the metric space of real continuous functions endowed
with the uniform metric sup 2	 jz1 ( )� z2 ( )j.

Theorem 3.4 Under H0 and Assumptions 1-7, �0
p
TsT (�̂; �); where sT (�̂; �) is de�ned in (3.5)

converges weakly to a mean-zero Gaussian element z ( ) of C (	) with covariance function

E [z ( 1) z ( 2)] = �01V
�
�1;�2

�
�2

where V (�1; �2) is de�ned in (3.15).
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Since sup 2	 (�) is a continuous functional of �0
p
TsT (�̂; �),

ŜBc
d! sup
 2	

z ( )2

�0V (�) �

under H0, by the continuous mapping theorem. Given that the limiting distributions of the
portmanteau test statistic ŜBc and individual tests ŜBi are unknown for the general speci�cation
framework, an approximate limiting distribution can be obtained by applying the approach of
Bierens (1990).

Theorem 3.5 Under Assumptions 1-7, choose independently of the data  > 0, 0 < � < 1 and
 0 2 	, where  =

�
�0; �0

�0. Let  ̂ = argmax 2	 SBc ( ) and

~ =

(
 0 if ŜBc � SBc ( 0) � T �

 ̂ if ŜBc � SBc ( 0) > T �
(3.21)

Then, under H0; ~SBc = SBc(~ ) will have an asymptotic �2 distribution with one degree of freedom,
whereas under H1; ~SBc=T ! sup 2	 q ( ) a.s. as T !1, where sup 2	 q ( ) > 0:

4 Experimental evidence

4.1 Tests for continuously distributed data in QML estimation

A fundamental application of these tests is to verify the speci�cation of the conditional mean and
variance in regression models, and in this context we are not typically interested in a complete
speci�cation of the distribution. Hence, it is appropriate to the speci�cation of the test statistic
that the variance matrix V (�) in (3.8) is constructed without imposing the information matrix
equalityM = � in the �nal term. We do note the possibility of imposing this restriction, although
this will create the hazard of a biased test if the restriction is actually incorrect. In this section
of the paper we explore only the unrestricted version.

We have carried out Monte Carlo simulations of our procedures in a variety of di¤erent models.
Our experiments use sample sizes of 100 and 500 observations and each design was carried out
with 10,000 replications. For each of our models, the following tests were computed: (i) the
regular Bierens residual test in (2.7), computed from appropriately de�ned residuals; (ii) the
joint score test in (3.14), having p degrees of freedom; (iii) the tests on individual score elements
de�ned in (3.19) and (iv) the composite test de�ned in (3.20). Although these tests can be applied
very straightforwardly to system estimation, we con�ne attention here to the single equation case
(G = 1), since it is not clear that the considerable computational overhead from larger models will
be justi�ed by additional insights. We have studied models of conditionally Gaussian data and
discrete data. Estimation is by (quasi-) maximum likelihood in all cases, which in the Gaussian
case in particular means that the Gaussian likelihood is optimized with respect to the residual
variance as well as the other parameters.

All the generated models incorporate a mean function m(xt; �) that may be either linear or
nonlinear in variables and parameters, and some also contain a variance function h (xt; �) to allow
for conditional heteroskedasticity. Table 1 shows the speci�cations of the di¤erent cases studied.
This mix of models involves either one or two explanatory variables, since we are interested in
the e¤ect of optimizing with respect to � in both the former and the latter cases. In each model
the null hypothesis, the case estimated, is represented by � = 0. In the experiments x1t, x2t, x3t
and "t are all generated independently as N (0; 1). Models M5 and M6 incorporate a threshold
e¤ect under the alternative, with parameter values dependent on the sign of a third explanatory
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m(xt; �) h(xt; �)

M1: �0 + �1x1t + �x
2
1t �2

M2: �0 + �1x1t exp(�x1t)
1=2

M3: �0 + �1x1t + �2x2t + �x1tx2t �2

M4: �0 + �1x1t + �2x2t exp(� (�1x1t + �2x2t))
1=2

M5: �0 + �1x1t + � (�0 + �1x1t) 1 (x3t < 0) �2

M6: �0 + �1x1t + �2x2t+ �2

� (�0 + �1x1t + �2x2t) 1 (x3t < 0)

M7: �0 + �1x1t + �x
2
1t

�
�0 + �1x

2
1t

�1=2
M8: �0 + �1x1t + �2x2t + �x1tx2t

�
�0 + �1x

2
1t + �2x

2
2t

�1=2
Table 1: Models of Mean and Variance

variable. Models M7 and M8 are distinctive in featuring conditional heteroskedasticity even under
the null hypothesis. Note that these are all random regressor models, such that new samples are
generated randomly for each Monte Carlo replication.

The sup-tests involve optimizing the statistic over the hypercubes � or 	, of dimension
D = k and D = k + p respectively. We employed a simple random search algorithm that does
not require di¤erentiability or any smoothness properties of the criterion function. Given a factor
a, a collection of N = aD uniformly distributed parameter points are drawn from the current
search region, initially chosen as � or 	. The function values are ranked, the smallest N=2 values
discarded and the search region is then shrunk to the smallest hypercube containing the remaining
points. The factor a is chosen �exibly, depending on the diameter of the current search region,
within the bounds 2:5 < a � 10. The step is repeated until the diameter of the search region does
not exceed 10�4 to provide a workable trade-o¤ between evaluation speed and required accuracy.

A critical choice in the construction of these tests is the values of the sensitivity parameters 
and � de�ned in Lemma 3.3. As a preliminary, we conducted a detailed comparison of alternative
choices using one of our models as the test case. This is Model 3 as de�ned in Table 1. These
experiments were conducted using the identical random numbers to generate the data, to ensure
a precise comparison between cases. A selection of these results (corresponding to the best 
found for each of four values of �) are presented in Table 3. The choice is not clear-cut, and
ideally we should experiment with a larger range of models and sample sizes to form a clear idea
of the trade-o¤s involved. However, on the basis of the comparisons we have tentatively used
values of  = 2 and � = 0:5 throughout the main body of experiments that follow.

The results of our experiments with these models are shown in Tables 4 to 8. The column
headings are as follows. B̂ denotes the appropriate variant of Bierens� original test, in other
words, the M-test performed on the covariance of the model residuals and the weight function. ŜB
denotes the joint test on the scores, having p degrees of freedom, whereas ŜBc is the composite test
(sup-test) having 1 degree of freedom. The other columns relate to the 1-degree of freedom tests
based on the individual elements of the score. Rejection frequencies when the null hypothesis is
true are shown in boldface, and in these cases the test critical values are taken from the relevant
chi-squared table. Rejection frequencies when the null hypothesis is false, in normal face, are
calculated using critical values from the empirical distributions obtained from the simulations of
the null, and hence these are estimates of the true powers. Refer in most cases to Table 1 to �nd
the mean and variance models represented in each row of the tables.
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Consider the linear/non-linear regression model with possible heteroskedasticity,

yt = m(xt; �) + h (xt; �)
1=2 "t, (4.1)

Note that in this general set-up, elements of the vector xt might explain either or both of mean
and variance, and elements of � could appear in either or both functions likewise. The conditional
Gaussian quasi log-likelihood function for the model in (4.1) is

LT (�) = �
1

2

TP
t=1

�
ln (ht) +

"2t
ht

�
(4.2)

with the typical term in the score vector given by

dt (�) = �
1

2

�
2
"t
ht

@"t
@�

�
�
"2t
ht
� 1
�
1

ht

@ht
@�

�
: (4.3)

where ht = h (xt; �). There are many data generation processes, not necessarily Gaussian, for
which the criterion function in (4.2) yields consistent and asymptotically normal estimates. This
is therefore a case where we need to distinguish between strictly correct speci�cation and our
characterization of the null hypothesis. All that matters is the existence of �0 satisfying the
conditions of the null and containing economically interpretable parameters.

The results for these models, with �0, �1, �2 and �
2 all equal to 1 are presented in Table

4. We also set �0, �1, �1 and �2 all equal to 1 in models M4, M7 and M8. Models M5 and
M6 incorporate a threshold e¤ect under the alternative and we set �0 = �2, �1 = �3 and
�2 = �1. Note that model M1 represents the null hypothesis for models M2 and M5, with
� = 0, and similarly with respect to models M3, M4 and M6. While M1-M6 are linear regressions
when � = 0, and could have been estimated by least squares, we have nonetheless performed all
estimations by Gaussian ML so that the variance parameter is estimated and contributes to a
score element. Observe that in a regression model, the regular Bierens (1990) test corresponds
asymptotically to the score-based test for the intercept. In this context, it is therefore merely one
of the several options that we compare for power. Models M7 and M8 are nonlinear under the
null hypothesis and contain extra parameters; in these cases the variance intercept �0 is entered
in the column headed ŜB;�2 in the obvious way.

Under the null hypothesis of a linear model, the empirical size of the Bierens test is close to
the nominal size of 5%, with the exception of the case when the errors are heteroskedastic and
T = 100 in which case Bierens test is undersized. The joint test ŜB is worst-sized of our score
tests but the composite test is an improvement in this regard. The individual tests corresponding
to the variance component are slightly oversized for T = 100 observations, but they are correctly
sized (to within experimental error) when T = 500, although slight over-rejections still occur
when the errors are heteroskedastic. Under the alternative nonlinear model with homoskedastic
error terms (models M1 and M3), all test statistics have good comparable size-adjusted power
even for T = 100. When heteroskedasticity is neglected but the conditional mean is correctly
speci�ed, the Bierens test has no power since it it essentially a test of functional form of the
mean equation. However, the score-based tests are able to detect this misspeci�cation with the
composite test attaining a simulated size-adjusted power of 94.24% for T = 100. Moreover, the
tests on individual parameters are able to disentangle di¤erent sources of misspeci�cation. For
example, the statistic corresponding to the variance in regression models is an excellent indicator
of heteroskedasticity. Our score-based tests also have very good power in detecting threshold
e¤ects, while Bierens test appears insensitive to this misspeci�cation in the mean. When the
errors are heteroskedastic under the null hypothesis, such as in the models M7 and M8, Bierens
test is not able to detect neglected non-linearity in the mean equation when the number of
regressors is two even for a sample size of 500 observations, whereas the score-based tests we
propose have good empirical power in these cases.
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4.2 Tests in GMM estimation

In this section we consider a model de�ned by a scalar function gt (�) = g (yt; xt; �) where the
true value of the parameters are de�ned as solutions to

E (gt (�0) jzt) = 0 a.s. (4.4)

In particular, yt may denote aG-vector of non-exogenous variables, withG > 1. In this framework
we shall estimate �0 by the GMM estimator

�̂ = argmin
�2�

g (�)0 Z(Z 0WZ)�1Z 0g (�)

where g (�) = (g1 (�) ; : : : ; gT (�))
0 and Z = (z1; : : : zT )

0, and W is a T �T weighting matrix which
for optimally should be set to E

�
g (�0) g (�0)

0�. The analogues of the score contributions in the
QML estimation are the array elements

dTt (�) = D (�)0 Z
�
Z 0WZ

��1
ztgt (�)

where

D (�) =
@g (�)

@�0
(T � p) ;

and
PT

t=1 dTt(�̂) = 0 by construction. We construct our tests by weighting the elements of the
sum just as in the preceding section. Whereas the null hypothesis is represented by (4.4) so that
it might be natural to base the test on the elements ztgt (�), when the model is overidenti�ed, it
is not the case that

PT
t=1 ztgt(�̂) = 0. On the other hand, we can in general only assert that

E (dTt(�0)jzt)! 0 a.s.

as T ! 1. We proceed on the assumption that the resulting size distortions in small samples
are of small order, and hence acceptable, under the usual regularity conditions. An advantage of
maintaining a common framework with the QML based tests is that the asymptotic derivations
in Section 3 go through unamended. It also an advantage to be able to associate a statistic with
each parameter in the model, as before. Note that in the just-identi�ed case the tests based on
dTt(�̂)wt and ztgt(�̂)wt are asymptotically equivalent.

A customary test of speci�cation in GMM estimation is the so-called Sargan-Hansen test of
overidenti�cation (see Sargan 1964, Hansen 1982) based on the distribution of ztgt(�̂). As in
the experiments of the preceding section we used samples of 100 and 500 observations and each
design is carried out with 10000 replications. We compare the performance of these tests for the
simultaneous equations models speci�ed in Table 2 with M13 being the null model and where we
set the values of the parameters in the equation for y1t and �0 and �1 in the equations for y2t
all equal to 1. The results of these experiments are reported in Table 5, where in all cases we
set W = IT . Under the null hypothesis corresponding to model M13, the tests have empirical
size close to the nominal size, although the Sargan-Hansen test is slightly over-sized even for 500
observations. In terms of the power properties, while Sargan-Hansen tests might be expected
to detect neglected non-linearity and misspeci�cation of the functional form, in practice they
have no power in those directions, whereas the Bierens type test and score-based tests have good
empirical power with the latter having higher rejection frequencies than the former.

4.3 Probit and logit models

Discrete choice models are typically di¤erent from those considered above in the sense that
model speci�cation is all-or-nothing business. Either all aspects of the distribution are correctly
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Equation 1
M13-M16: y1t = �0 + �1x1t + �2x2t + �3x3t + "1t

Equation 2
M13: y2t = �0 + �1y1t +

1
2 ("1t + "2t)

M14: y2t = �0 + �1y
2
1t +

1
2 ("1t + "2t)

M15 y2t = �0 + �1y1t + �x
2
1t +

1
2 ("1t + "2t)

M16: ln y2t =
1
4(�0 + �1y1t +

1
2 ("1t + "2t))

Table 2: Simultaneous Equations Models

speci�ed, or, in general estimator consistency fails. There is no �quasi-maximum likelihood�for
these cases. Although our tests have the same structure as before, there is a crucial di¤erence in
the interpretation. The conditional mean of the scores is directly connected with the form of the
distribution and hence the latter is amenable to test.

In a generalization of the standard probit and logit models to allow for heteroskedasticity in
the latent model, we consider an underlying latent equation with the form

y�t = m (xt; �) + h (xt; �)
1=2 "t (4.5)

where "t is an independent and identically distributed shock with distribution function F (z) =
P ("t < z). In the Probit case F (z) = �(z), the standard Gaussian c.d.f., while in the logit model
F (z) = 1=(1 + ez). The binary observed variable is then de�ned as

yt =

(
0 if y�t � 0

1 if y�t > 0
(4.6)

Let

m� (xt; �) =
m (xt; �)

h (xt; �)
1=2

; (4.7)

while noting that when ht = �2, not depending on t, m�
t becomes mt with �2 unidenti�ed and

hence set to 1. This is the case with all our null hypotheses, for which the statistic is calculated,
although we retain the general notation below for consistency. The probabilities are accordingly
de�ned as

Pr (yt = 1jxt) = Pr ("t > �m� (xt; �))

= F (m� (xt; �)) :

The conditional log-likelihood function is

logLT (�) =

TX
t=1

yt log [F (m
� (xt; �))] + (1� yt) log [1� F (m� (xt; �))]

and the score contribution takes the form

dt (�) = (yt � F (m� (xt; �))) q(xt; �)
@m� (xt; �)

@�
(4.8)

where

q(xt; �) =
f (m� (xt; �))

F (m� (xt; �)) [1� F (m� (xt; �))]
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and f (z) = @F (z) =@z. In the logit case, q(xt; �) = 1:
Correct speci�cation of the probit/logit models requires that under the null hypothesis

Pr (yt = 1jxt) = F (m� (xt; �0))

and hence (recalling that elements of zt not included in xt are irrelevant by hypothesis)

Pr (E(dt (�0) jzt) = 0) = 1:

The Bierens test (1990) is not designed for discrete choice models but a consistent test statistic
can in fact be constructed by generalizing his approach. This involves replacing the regression
residuals in the test indicator (2.3) by the generalized residuals, de�ned for binary choice models
as

"̂�t =
�
yt � F (m�(xt; �̂))

�
q
�
xt; �̂

�
: (4.9)

This test therefore di¤ers from the test based on (3.5) by the replacement of the factors @m� (xt; �) =@�
by unity in the terms in the sum.

The results for the probit and logit models are reported in Tables 6 and 7 respectively. Refer
to Table 1 for the mean and variance functions with �0 equal to 0, and �1 = �2 = 1, and note that
m = m� for each of the null hypotheses tested, although the data were of course generated using
nonlinear latent models M2 and M4 according to (4.5). Models M9 and M10 in Table 6 are new
cases, de�ned by use of a non-Gaussian distribution featuring skewness to generate the binary
responses. We used a centred chi-squared with four degrees of freedom to generate the series
in these cases, with the mean functions given by models M1 and M3, respectively with � = 0.
The Bierens type test based on the generalized residuals and our score-based tests have good
size properties both for the probit and logit models, with the exception of the joint test which is
again slightly oversized for both 100 and 500 observations. The tests perform well in detecting
neglected nonlinearity, heteroskedasticity and misspeci�cation of the distribution function, with
the composite test having overall the best empirical power among the other statistics.

4.4 Count data models

Consider the Poisson model of count data yt, taking nonnegative integer values, where

P (ytjxt) =
exp(��t)�

yt
t

yt!
, for yt = 0; 1; 2; ::

The Poisson regression speci�cation considered is

ln�t = m� (xt; �)

where m� is de�ned by (4.7). With this speci�cation

E [ytjxt] = V ar[ytjxt] = �t

and the unknown parameter vector �0 can be estimated by MLE. Given an independent sample
of size T , the log-likelihood function is

lnL =
TP
t=1
[��t + ytm� (xt; �)� ln (yt!)]

and the score contribution is

dt(�) = (yt � �t)
@m� (xt; �)

@�
:
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Therefore, a consistent speci�cation test can be constructed based on the test indicator.

sT (�̂; �) =
1

T

TX
t=1

(yt � �̂t)w (xt; �)
@m�(xt; �̂)

@�
:

As pointed out by Hausman, Hall and Griliches (1984) and Cameron and Trivedi (1986, 1998),
the fact that the mean of the Poisson dependent variable equals its variance is a potentially
unrealistic feature of the observed data. Cameron and Trivedi (1986) consider two forms of
negative binomial model that arise from a natural generalization of cross-section heterogeneity.
In the so-called Negative Binomial 1, the variance of yt has the speci�cation var[ytjxt] = �t (1 + �)
and in the Negative Binomial 2 form, var[ytjxt] = �t + ��

2
t .

The log-likelihood function, with the parameterization �t = �t=� for the Negative Binomial
1 and �t = 1=� for the Negative Binomial 2, is

LT (') =
TP
t=1

�
ln � (yt + �t)� ln � (1 + yt)� ln � (�t) + �t ln

�
�t

�t + �t

�
+ yt ln

�
�t

�t + �t

��
where ' =

�
�0; �

�0 and the score vector is
dt (') = (yt � �t)

�
�t

�t + �t

�
@m (xt; �)

@�

+

�
(ln �)0 (yt + �t)� (ln �)0 (�t) + ln

�
�t

�t + �t

�
� yt � �t
�t + �t

�
@�t
@'

where (ln �)0 represents the �rst derivative of the log of the gamma function.
The results of tests on models M1-M4 with parameter values as in Section 4.1 are shown

in Table 8 for the Poisson model, and in Table 9 for the Negative Binomial 1 case, where the
additional parameter � is equal to 2. Our tables also report the Bierens test where the residual
in this case is computed as "̂t = yt� �̂t. The results in Table 8 for the Poisson model suggest that
the tests are correctly sized and have good power in detecting nonlinearity and heteroskedasticity.
When the null model is the Negative Binomial 1, with the results being reported in Table 9, the
tests are slightly oversized for T = 100, with the joint test being the worst-sized of all. The tests
perform well in detecting nonlinearity and heteroskedasticity for T = 500 observations.

As noted in Section 3 above, our test cannot detect the use of an incorrect likelihood function,
for example Poisson for Negative Binomial. However, Cameron and Trivedi (1990) suggest a score
test for equality of mean and variance, a procedure that could be regarded as complementary to
our own.

5 Concluding Remarks

Our reported simulation results show that at least for the given alternatives our tests typically
have ample power to detect misspeci�cation. However, the point we wish to emphasize is that
these tests are not tailored to the particular model, as is common practice, but apply a single
rule to the full range of estimators, and are accordingly very easy to implement routinely.

The other feature that the tables highlight is that the joint chi-square test (having p degrees
of freedom) is in general the worst-sized of our alternatives and the so-called composite test
(depending on �) improves on the joint test in this regard, as well as having at least equivalent
power. The tests on individual parameters are quoted chie�y to see how much information they
give on the sources of misspeci�cation. In particular, note that the statistic corresponding to
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the variance in regression models is an excellent indicator of heteroskedasticity. The so-called
regular Bierens test, based on the covariance of residuals with weight functions, should in many
cases give a similar result to the individual score based test for the intercept parameter. It is
quoted in the tables as a basis for comparison. There are a number of cases where this test has
no power in our experiments, for example, regression models with heteroskedasticity in both null
and alternative, threshold models and little power in negative binomial models in the context of
Poisson model estimation.

In this paper we focus on independently sampled observations. In generalizing our results
to time series models, we �rst note that the likelihood contributions will need to be replaced by
conditional contributions where the conditioning variables include lags, similarly to the work of
de Jong (1996). However, there is a further condition for correct dynamic speci�cation, that the
score contributions, and hence also the terms in our test statistics when suitable de�ned, should
form martingale di¤erence sequences. This could lead to a generalization of the Nyblom-Hansen
class of dynamic speci�cation tests (Nyblom 1989, Hansen 1992) for example. However, these
important extensions must be left for future research.
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A Appendix

Proof of Lemma 3.1. The proof follows trivially from Lemma 1 of Bierens (1990).

Lemma A.1 Under Assumptions 1-4

sup
�2�

 1T TP
t=1

dt(�)dt(�)
0 � lim

T!1
E

�
1

T

TP
t=1

dt(�)dt(�)
0
� = op (1) (A-1)

sup
�2�;�2�

 1T
TX
t=1

wtdt(�)� lim
T!1

E

"
1

T

TX
t=1

wtdt(�)

# = op (1) (A-2)

sup
�2�;�2�

 1T
TX
t=1

wtdt(�)dt(�)
0 � lim

T!1
E

"
1

T

TX
t=1

wtdt(�)dt(�)
0

# = op (1) (A-3)

sup
�2�;�2�

 1T
TX
t=1

w2t dt(�)dt(�)
0 � lim

T!1
E

"
1

T

TX
t=1

w2t dt(�)dt(�)
0

# = op (1) (A-4)

sup
�2�

 1T TP
t=1

@dt(�)

@�0
� lim
T!1

E

�
1

T

TP
t=1

@dt(�)

@�0

� = op (1) (A-5)

sup
�2�;�2�

 1T TP
t=1

�
wt
@dt(�)

@�0

�
� lim
T!1

E

�
1

T

TP
t=1

�
wt
@dt(�)

@�0

�� = op (1) (A-6)

Proof of Lemma A.1. Under Assumptions 1-4, the uniform convergence results follow
by applying a uniform law of large numbers (ULLN) for independent, not identically distributed
(i.n.i.d.) random variables (e.g. White (1980), Lemma 2.3). For a generic function qt (�; �) in
order to show that

sup
�2�;�2�

 1T
TX
t=1

qt (� �)� lim
T!1

E

"
1

T

TX
t=1

qt (�; �)

# = op (1) ;

it is su¢ cient to establish that E sup�2�;�2�
 1T PT

t=1 qt (� �)
1+s < 1 uniformly in t for some

s > 0: For example, (A-1) follows by the Cauchy-Schwartz inequality and Assumption 4(i). The
other parts of the Lemma follow similarly from Assumption 4(i)-(iv).

Proof of Lemma 3.2. A mean value expansion of
p
TsT (�̂; �) =

1p
T

PT
t=1 dt(�̂)wt about

the true parameter �0 yields

p
TsT (�̂; �) =

p
TsT (�0; �)�

1

T

TX
t=1

 
@dt

�
��i;�
�

@�0
wt

!
p
T (�̂ � �0)

where ��i;� is a mean value, in general di¤erent for each component of the score vector, such that��i;� � �0 � �̂ � �0 = Op
�
T�1=2

�
by Assumption 6. Under Assumptions 1-6 and employing

Lemma A.1, the mean value expansion above becomes
p
TsT (�̂; �) =

p
TsT (�0; �)�Q (�)

p
T (�̂ � �0) + op (1)

=
p
TsT (�0; �)�Q (�)M�1 1p

T

TX
t=1

dt(�0) + op (1)

=
p
TzT (�0; �) + op (1)
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where M and Q (�) are de�ned in (3.6) and (3.9), respectively, and let

zT (�0; �) =
1

T

TX
t=1

dt(�0)wt �Q (�)M�1 1

T

TX
t=1

dt(�0): (A-7)

For �xed � 2 RK , the Liapounov CLT for i.n.i.d. random variables (see Theorem 23.11, Davidson,
1994) and Assumption 4(i)-(ii) ensure 

1p
T

PT
t=1 dt(�0)wt

1p
T

PT
t=1 dt(�0)

!
d�! N

��
0
0

�
;

�
R (�) P (�)
P (�)0 �

��
where P (�) ; R (�) and � are de�ned in (3.10), (3.11) and (3.7), respectively.

Therefore,

1p
T

TX
t=1

dt(�̂)wt
d�! N (0; V (�))

where

V (�) = R (�)�Q (�)M�1P (�)0 � P (�)M�1Q (�)0 +Q (�)M�1�M�1Q (�)0 : (A-8)

Lemma A.2 Under H0 and Assumptions 1-6,

V̂ (�)�1=2
p
TsT (�̂; �)� V (�)�1=2

p
TzT (�0;�) = op(1) (A-9)

uniformly over � 2 �, where zT (�0;�) is de�ned in (A-7).

Proof of Lemma A.2. We have that

sup
�2�

V̂ (�)�1=2pTsT (�̂; �)� V (�)�1=2pTzT (�0;�)
� sup

�2�

V̂ (�)�1=2 � V (�)�1=2 sup
�2�

pTsT (�̂; �)
+sup
�2�

pTsT (�̂; �)�pTzT (�0;�) sup
�2�

V (�)�1=2 (A-10)

By Lemmas 3.2 and A.1, and Slutsky�s Theorem

sup
�2�

V̂ (�)�1=2 � V (�)�1=2 = op (1) :

Moreover, by Lemma 3.2
p
TsT (�̂; �) =

p
TzT (�0;�) + op (1)

= Op (1)

uniformly over �. Therefore,

sup
�2�

V̂ (�)�1=2 � V (�)�1=2 sup
�2�

pTsT (�̂; �) = op(1):

Now
sup
�2�

pTsT (�̂; �)�pTzT (�0;�) = op (1)

by Lemma 3.2 and since sup�2�
V (�)�1=2 = Op (1) ; the second term in the expression (A-10)

is op (1) : This proves the result.
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Lemma A.3 Under Assumptions 1-7 and H1; there exists for each � 2 RK some function �� :
Rp ! Rp such that

V̂ (�)�1=2sT (�̂; �)� V (�)�1=2�� = op (1)

where V (�)�1=2�� 6= 0 for all � 2 RK except possibly in a set of Lebesgue measure zero.

Proof of Lemma A.3. We can write for each � 2 RKV̂ (�)�1=2sT (�̂; �)� V (�)�1=2�� � V̂ (�)�1=2 � V (�)�1=2 k��k
+
sT (�̂; �)� ��V̂ (�)�1=2 : (A-11)

For the second right-hand side term, V̂ (�)�1=2 = Op (1) and Lemma A.1(A-2) establishes that

plim
T!1

sup
�2�

sT (�; �)� lim
T!1

E [sT (�; �)]

 = 0:
Therefore, set �� = limT!1E [sT (�1; �)], where �1 = plim �̂ under H1. Moreover, in the �rst
term V̂ (�)�1=2�V (�)�1=2 = op (1) by Lemma A.1 and Slutsky�s Theorem and since k��k = O (1)
by Assumption 4(ii), the �rst term on the right-hand side of (A-11) is op (1). Therefore, it has
been established that V̂ (�)�1=2sT (�̂; �)� V (�)�1=2�� = op (1)

Now by Assumption 7 and Lemma 3.1, V (�)�1=2�� 6= 0 for every � 2 RK=B:

Proof of Theorem 3.1. The result under H0 follows from Lemmas 3.2 and A.2. Under
H1, it follows from Lemma A.3 that plimT!1 SB=T = �0�0V (�)

�1��0 = � (�), where ��;0 =
limT!1E [sT (�0; �)] = 0 only on a set B0 of Lebesgue measure zero de�ned in Lemma 3.1.
Therefore, P [� (�) > 0] = 1 for each � 2 RK=B0:

Lemma A.4 Under Assumptions 1-4 and H0,
p
TzT (�0;�) de�ned in (A-7) is tight in �:

Proof of Lemma A.4. Consider � 2 Rp such that �0� = 1. Following Newey (1991,
p1163), in order to show that

p
TzT (�0;�) is tight in �, it su¢ ces to prove that

(i) For each � > 0 and �0 2 � there exists an " such that

P
h���pT�0zT (�0;�0)��� > "

i
� �

for all t � 1:
(ii) For each � > 0 and " > 0 there exists � > 0 such that

P

"
sup

k�1��2k<�

����0 �pTzT (�0;�1)�pTzT (�0;�2)���� � "

#
� �

for all T � T0, where T < 1. The condition (i) follows from Lemma 3.2 which establishes thatp
TzT (�0;�0) = Op (1). To show condition (ii), since zT (�0;�) = sT (�0; �) � Q (�)M�1dT (�0),

where dT (�0) = T�1
PT

t=1 dt(�0) by the continuity of Q (�), then it is su¢ cient to show that for
all � 2 Rp such that �0� = 1

E

 
sup
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<1:
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Notice that
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�����
!
:

Now since � = [�b; b]K and given that k�1 � �2k < �, note that

����m1
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mj
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���
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where, in the second and third members, we use the convention that
Qb
p=a �

mp

i;p = 1 if a > b for
i = 1; 2. Finally, since

iP
m1;:::;mK=0

�
i

m1; : : : ;mK

�
�1 (xt)

m1 � � ��K (xt)mK =
�
�0� (xt)

�i
where � = (1; : : : ; 1)0 is the summation vector, we have

E

 
sup
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!
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����
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i
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!

= bK�1�2E

�����1=pT TP
t=1

�0dt (�0)
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� bK�1�2

"
E

�
T�1=2

TP
t=1

�
0
dt (�0)

�2#1=2
E
h�
exp

�
�0� (xt)

��2i1=2
<1

by Assumption 4(i).

Proof of Theorem 3.2. The result follows from Lemmas 3.2, A.2 and A.4.

Proof of Lemma 3.3. Under H0; from Theorem 3.1, bSB � SB (�0) = Op (1), so for any

 > 0; � 2 (0; 1) ; P
hbSB(�)� SB (�0) > T �

i
! 0 and limT!1 P

h
~� = �0

i
= 1: Thus, under

H0, the test is asymptotically based on SB (�0) with probability 1 and, since conditionally on �0;

SB (�0)
d! �21; then eSB d! �21: Under H1; the asymptotic distribution follows from Theorem 3.1.

Lemma A.5 Under H1 and Assumptions 1-7, there exists for each � 2 RK and � 2 H some
function �� : Rp ! Rp such that

V̂ (�)�1=2 �0sT (�̂; �)� V (�) �0�� = op (1)

where V (�) �0�� 6= 0 for all � 2 RK except possibly in a set of Lebesgue measure zero.

Proof. The proof follows straightforwardly from Lemma A.3 since for each � 2 RK , � 2 HV̂ (�)�1=2�0sT (�̂; �)� V (�)�1=2�0�� � V̂ (�)�1=2 � V (�)�1=2 k�k k��k
+ k�k

sT (�̂; �)� ��V̂ (�)�1=2
where k�k = 1.

Proof of Theorem 3.3. The proof under H0 follows easily from Lemmas 3.2 and A.2,
since for each � 2 RK and � 2 H���V̂ (�)�1=2�0pTsT (�̂; �)� V (�)�1=2�0pTzT (�0;�)��� � k�k

V̂ (�)�1=2pTsT (�̂; �)� V (�)�1=2pTzT (�0;�)
=

V̂ (�)�1=2pTsT (�̂; �)� V (�)�1=2pTzT (�0;�)
given that k�k = 1:Under H1, from Lemma A.5, plimT!1 SBc=T = �0�0� (�

0V (�)�)�1 �0��0 =
� (�; �), where � 6= 0 since k�k = 1 and ��;0 = limT!1E [sT (�0; �)] = 0 only on a set B0 of
Lebesgue measure zero de�ned in Lemma 3.1. Therefore, P [� (�; �) > 0] = 1 for each � 2 RK=B0
and � 2 H:

Lemma A.6 Under Assumption 1-4 and H0; �0
p
TzT (�0; �) is tight in 	:

Proof of Lemma A.6. Similar to Lemma A.4, it su¢ ces to prove that
(i) For each � > 0 and  0 2 	; where  0 =

�
�00; �

0
0

�0 there exists an " such that
P
h����00pTzT (�0;�0)��� > "

i
� �

for all t � 1:
(ii) For each � > 0 and " > 0 there exists � > 0 and � > 0 such that

P

"
sup

k�1��2k<�;k�1��2k<�

����01pTzT (�0;�1)� �02pTzT (�0;�2)��� � "

#
� �
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for all T � T0, where T < 1. The condition (i) follows from Lemma 3.2 which establishes thatp
TzT (�0;�0) = Op (1) and thus �00

p
TzT (�0;�0) = Op (1) since k�0k = 1. To show condition (ii),

notice that

sup
k�1��2k<�;k�1��2k<�

����01pTzT (�0;�1)� �02pTzT (�0;�2)���
� sup

k�1��2k<�
k�1 � �2k sup

�2�

pTzT (�0;�)
+ sup
k�1��2k<�

pTzT (�0;�1)�pTzT (�0;�2) sup
�2H

k�k

� � sup
�2�

pTzT (�0;�)+ sup
k�1��2k<�

pTzT (�0;�1)�pTzT (�0;�2) :
Now, since sup�2�

pTzT (�0;�) = Op (1) by Theorem 3.2 and sup�2H k�k = 1, the result follows
by applying condition (ii) of Lemma A.4.

Proof of Theorem 3.4. The result follows from Lemmas 3.2 and A.2 and A.6.

Proof of Theorem3.5. Under H0, Theorem 3.3, bSBc�SBc ( 0) = Op (1), so for any  > 0,

and � 2 (0; 1), P
hbSBc( )� SBc ( 0) > T �

i
! 0 and limT!1 P

h
~ =  0

i
= 1: Thus, under H0,

the test is asymptotically based on SBc ( 0) with probability 1 and since conditionally on  0;

SBc ( 0)
d! �21, and  0 is independent of the data generating process, then eSBc d! �21: Under H1;

the asymptotic distribution follows from Theorem 3.3.
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 � � B̂ ŜB ŜBc ŜB;�0 ŜB;�1 ŜB;�2 ŜB;�2

T = 100

8 0.2 0 4.94 9.83 7.62 5.65 6.09 4.47 7.48
0.02 0.47 2.05 .06 0 0 0

0.2 23.41 15.96 16.19 24.55 17.29 27.86 4.30
0.01 .1.27 5.24 0.31 0.38 0.15 0.03

5 0.3 0 4.94 9.87 7.70 5.65 6.09 4.47 7.48
0.02 0.51 .0214 0.06 0 0.01 0.1

0.2 23.42 15.92 16.24 24.57 17.29 27.87 4.30
0.02 1.37 5.50 0.33 0.38 0.16 0.03

2 0.5 0 4.94 9.85 7.68 5.65 6.09 4.47 7.48
0.02 0.49 2.11 0.06 0 0.01 0.1

0.2 23.41 15.87 16.15 24.56 17.29 27.87 4.30
0.01 10.32 50.83 0.32 0.38 0.16 0.03

1 0.7 0 4.92 9.47 6.06 5.60 6.09 4.46 7.40
0 0.08 0.42 0.01 0 0 0

0.2 23.40 16.17 17.45 24.60 17.11 17.95 4.40
0 .0032 .0147 .0003 .0009 .0003 .0001

T = 500

8 0.2 0 5.21 6.60 5.26 5.36 5.27 4.77 5.89
0 0.01 0.07 0 0 0 0

0.2 81.75 71.98 76.35 82.02 79.95 80.09 4.70
0.08 1.19 8.37 0.31 1.22 1.43 0

5 0.3 0 5.21 6.59 5.24 5.36 5.27 4.77 5.89
0 0 0.05 0 0 0 0

0.2 81.73 71.75 75.26 81.96 79.81 79.88 4.70
0.01 0.41 3.59 0.08 0.26 0.38 0

2 0.5 0 5.21 6.59 5.20 5.36 5.27 4.77 5.89
0 0 0 0 0 0 0

0.2 81.73 71.62 74.45 81.94 79.79 79.85 4.70
0 0.01 0.29 0 0.01 0.01 0

1 0.7 0 5.21 6.59 5.20 5.36 5.27 4.77 5.89
0 0 0 0 0 0 0

0.2 81.73 71.61 74.35 81.94 79.79 79.85 4.70
0 0.01 0.29 0 0.01 0 0

Table 3: Rejection frequencies (% ) for Model 3 with alternative statistic selection criteria. % of
replications in which sup-statistic selected is shown in italics.
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Model � B̂ ŜB ŜBc ŜB;�0 ŜB;�1 ŜB;�2 ŜB;�2 ŜB;�1 ŜB;�2
T = 100

M1,2,5 0 5.40 9.14 7.03 6.23 5.70 - 7.63 - -
M1 0.4 86.51 95.37 89.70 92.44 99.48 - 8.53 - -

0.8 99.43 100 99.63 100 99.96 - 16.02 - -
M2 0.4 4.27 42.02 41.07 4.23 5.36 - 57.85 - -

0.8 4.16 96.08 94.24 4.44 8.59 - 98.79 - -
M5 0.4 4.16 37.68 38.92 4.22 6.54 - 47.01 - -

0.8 7.14 99.50 91.07 6.42 6.62 - 99.84 - -
M3,4,6 0 4.94 9.85 7.68 5.65 6.09 4.47 7.48 - -
M3 0.4 66.71 57.42 65.34 69.40 72.34 69.96 5.31 - -

0.8 95.89 99.22 99.54 99.26 99.60 99.59 13.28 - -
M4 0.4 5.02 75.16 74.00 6.25 5.81 7.55 89.61 - -

0.8 5.54 99.28 99.40 9.79 9.33 13.32 99.95 - -
M6 0.4 3.53 31.73 32.29 4.56 16.68 7.68 41.23 - -

0.8 11.34 83.49 80.87 12.18 6.28 12.38 90.81 - -
M7 0 2.50 12.32 10.34 7.40 6.75 - 7.90 8.63 -

0.4 65.70 42.99 44.55 55.00 65.77 - 4.74 4.21 -
0.8 98.88 94.94 92.03 96.80 99.21 - 3.55 3.61 -

M8 0 2.22 13.14 11.52 6.43 7.54 6.05 7.06 6.84 6.30
0.4 7.36 10.76 10.48 10.86 11.14 17.40 5.13 4.35 4.47
0.8 8.17 39.59 41.72 52.50 45.22 46.41 4.51 4.03 4.51

T = 500

M1,2,5 0 4.76 6.14 5.60 4.92 4.94 - 5.49 - -
M1 0.4 100 100 99.77 100 100 - 36.07 - -

0.8 100 100 99.93 100 99.99 - 72.03 - -
M2 0.4 5.32 99.69 97.73 5.12 5.53 - 99.93 - -

0.8 4.71 100 100 4.63 6.71 - 100 - -
M5 0.4 10.40 99.25 85.56 10.26 6.09 - 99.91 - -

0.8 2.42 99.99 99.68 2.51 16.17 - 100 - -
M3,4,6 0 5.21 6.59 5.20 5.36 5.27 4.77 5.89 - -
M3 0.4 99.96 99.97 99.94 99.96 99.95 99.99 7.21 - -

0.8 100 100 99.97 100 100 100 19.59 - -
M4 0.4 4.75 99.98 99.91 4.96 5.18 5.65 100 - -

0.8 4.58 100 100 5.60 6.76 7.27 100 - -
M6 0.4 3.16 95.14 61.11 3.20 3.43 9.64 99.04 - -

0.8 1.50 100 99.84 1.60 6.28 10.74 100 - -
M7 0 4.24 7.86 6.99 5.49 5.43 - 6.01 6.06 -

0.4 99.96 99.83 97.26 99.84 99.97 - 4.47 5.19 -
0.8 100 99.92 97.10 99.98 99.94 - 6.38 7.96 -

M8 0 4.53 9.46 6.27 5.67 5.38 5.49 6.07 6.87 6.93
0.4 8.93 43.61 55.94 61.02 62.60 63.44 4.64 4.37 4.83
0.8 29.29 98.96 99.49 99.49 99.81 99.59 4.15 3.67 3.93

Table 4: Rejection frequencies (%) for Gaussian models (=2 and �=0.5)
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� Sarg B̂ ŜB ŜBc ŜB;�0 ŜB;�1
T = 100

M13 0 7.46 6.13 6.17 4.98 6.18 4.72
M14 - 6.00 88.40 91.58 96.90 88.07 97.34
M15 0.4 11.01 5.80 13.37 20.96 5.74 18.81

0.8 22.15 7.92 24.95 27.85 8.15 26.28
M16 - 2.55 37.14 45.47 62.62 36.53 65.37
T = 500

M13 0 7.05 5.79 5.89 4.93 5.88 4.80
M14 - 2.86 100 100 100 100 100
M15 0.4 6.62 28.19 84.25 86.82 28.02 89.08

0.8 30.89 47.48 99.53 99.91 47.07 99.67
M16 - 3.51 98.81 99.34 99.39 98.84 99.35

Table 5: Rejection frequencies (%) for GMM models (=2 and �=0.5)

Model � B̂ ŜB ŜBc ŜB;�0 ŜB;�1 ŜB;�2
T = 100

M1,2,9 0 7.69 7.36 6.26 7.62 5.75 -
M1 0.4 45.11 38.96 59.02 45.11 60.14 -

0.8 98.53 96.92 99.07 98.53 99.28 -
M2 0.4 13.78 9.58 13.51 13.78 11.02 -

0.8 29.92 25.75 36.93 29.93 30.78 -
M9 - 90.52 82.75 80.83 90.53 5.78 -
M3,4,10 0 6.40 6.67 5.89 6.42 4.30 8.58
M3 0.4 13.42 6.64 13.85 13.42 14.65 4.65

0.8 32.89 19.45 41.18 32.90 38.82 18.85
M4 0.4 13.10 7.59 10.78 13.10 10.55 4.04

0.8 28.29 22.87 39.38 28.29 34.19 18.09
M10 - 16.13 10.80 20.41 16.12 20.71 7.51
T = 500

M1,2,9 0 5.43 9.07 5.51 5.43 5.74 -
M1 0.4 99.93 99.88 99.69 99.94 99.99 -

0.8 100 99.99 99.97 99.98 99.98 -
M2 0.4 54.69 38.14 58.07 54.69 49.21 -

0.8 89.11 92.63 97.25 89.12 95.38 -
M9 - 99.91 99.31 98.39 99.94 96.55 -
M3,4,10 0 5.09 7.40 5.82 5.09 5.72 5.77
M3 0.4 49.60 38.48 59.66 49.60 35.79 38.12

0.8 98.17 90.18 98.30 98.17 88.22 89.19
M4 0.4 35.07 30.38 58.18 35.07 38.47 37.89

0.8 74.81 88.68 98.52 74.81 91.22 92.29
M10 - 60.40 66.06 89.81 60.40 65.38 66.41

Table 6: Rejection frequencies (%) for Probit models (=2 and �=0.5)
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Model � B̂ ŜB ŜBc ŜB;�0 ŜB;�1 ŜB;�2
T = 100

M1,2,9 0 5.84 6.60 5.19 5.85 4.65 -
M1 0.4 34.36 30.74 51.53 34.36 52.92 -

0.8 86.20 79.75 91.44 86.22 90.68 -
M2 0.4 17.53 11.24 16.73 17.53 13.43 -

0.8 28.13 18.50 24.66 28.13 19.02 -
M3,4,10 0 5.02 5.96 4.95 5.02 5.18 5.28
M3 0.4 9.86 6.34 15.65 9.87 11.85 10.28

0.8 23.00 15.57 36.65 23.00 23.79 25.13
M4 0.4 10.70 4.49 8.71 10.69 6.76 5.36

0.8 23.22 10.59 28.23 23.21 17.95 17.94
T = 500

M1,2,9 0 5.41 6.63 5.66 5.38 5.20 -
M1 0.4 95.36 95.02 94.47 95.35 97.55 -

0.8 99.99 99.99 99.41 99.98 99.97 -
M2 0.4 38.50 31.30 43.24 38.51 37.64 -

0.8 88.33 88.51 93.58 88.32 90.88 -
M3,4,10 0 5.12 6.11 5.49 5.12 4.83 5.65
M3 0.4 36.59 31.78 47.34 36.59 34.52 33.26

0.8 91.04 88.13 95.91 91.04 86.00 86.28
M4 0.4 41.26 36.10 64.40 41.26 49.70 45.16

0.8 81.11 94.54 99.12 81.11 94.00 94.34

Table 7: Rejection frequencies (%) for Logit models (=2 and �=0.5)

30



� B̂ ŜB ŜBc ŜB;�0 ŜB;�1 ŜB;�2
T = 100
M1,2 0 5.65 5.65 6.34 5.64 5.92 -
M1 0.4 82.04 100 99.98 82.14 99.99 -

0.8 99.75 100 95.81 99.79 94.94 -
M2 0.4 33.12 68.58 78.13 33.25 76.29 -

0.8 88.87 99.08 99.15 88.92 99.32 -
M3,4 0 5.79 5.42 5.53 5.79 5.49 5.86
M3 0.4 90.57 87.72 99.13 90.78 91.24 83.58

0.8 89.61 97.93 99.97 89.43 90.01 95.16
M4 0.4 62.13 95.97 96.90 62.25 85.51 86.63

0.8 93.80 99.27 99.86 93.78 98.13 97.25
T = 500

M1,2 0 4.97 4.61 5.18 4.98 4.93 -
M1 0.4 90.01 100 99.98 90.01 100 -

0.8 89.42 100 98.35 89.42 96.65 -
M2 0.4 63.99 100 99.73 63.98 99.99 -

0.8 100 99.98 99.79 100 100 -
M3,4 0 4.85 4.64 5.10 4.85 5.12 4.94
M3 0.4 95.54 100 99.99 95.69 100 100

0.8 85.27 99.99 99.99 85.51 100 100
M4 0.4 92.73 100 100 92.77 100 100

0.8 100 100 100 100 100 100

Table 8: Rejection frequencies (%) for Poisson count models (=2 and �=0.5)
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� B̂ ŜB ŜBc ŜB;�0 ŜB;�1 ŜB;�2 ŜB;�
T = 100

M1,2 0 5.38 9.87 6.86 6.47 6.51 - 7.97
M1 0.4 15.29 92.96 84.60 13.96 86.26 - 67.52

0.8 15.61 97.9 96.04 41.63 96.05 - 3.05
M2 0.4 11.87 21.51 28.36 5.75 35.49 - 3.98

0.8 27.92 42.70 54.40 10.07 63.69 - 3.32
M3,4 0 6.79 9.36 6.91 6.30 6.80 5.46 8.36

0.4 40.64 48.94 62.04 24.08 48.10 50.52 20.17
0.8 29.98 87.43 88.63 37.40 67.30 72.22 36.44

M4 0.4 26.18 51.15 60.50 9.01 49.01 53.18 3.46
0.8 44.81 67.65 79.94 16.28 64.83 71.34 2.97

T = 500

M1,2 0 4.97 6.16 4.79 5.26 4.81 - 5.58
M1 0.4 42.42 99.50 96.69 11.74 94.46 - 65.46

0.8 32.09 97.14 92.98 98.91 99.77 - 7.04
M2 0.4 27.60 90.16 93.25 12.55 96.81 - 5.84

0.8 67.88 99.86 99.96 45.56 99.98 - 4.28
M3,4 0 5.70 6.10 5.17 5.17 5.15 5.32 5.85
M3 0.4 92.97 99.85 97.47 62.11 95.13 94.48 95.38

0.8 35.31 97.66 95.02 68.77 91.39 93.75 42.22
M4 0.4 68.91 99.61 99.88 38.41 99.46 99.48 5.0

0.8 94.38 100 100 67.47 99.99 99.99 4.67

Table 9: Rejection frequencies (%) for Negative Binomial 1 models (=2 and �=0.5)
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