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Abstract. This paper fully characterizes the optimal control of a recurrent
infectious disease through the use of (non-vaccine) prevention and treatment. The
dynamic system may admit multiple steady states and the optimal policy may be
path dependent. We �nd that an optimal path cannot end at a point with maximal
prevention; it is necessarily zero or at an intermediate level. In contrast, an optimal
path must end at a point at which treatment is either maximal or minimal. We
show that treatment and prevention are imperfect substitutes and may or may not
be used in conjunction, depending on the state of the system. This means that
optimal paths do not generally approach steady states as rapidly as possible. We
show that for some parameterizations, it is always optimal to go to a speci�c steady
state (either a high or a low prevalence one) while for others, the optimal path and
steady state depend on initial conditions and thus there is hysteresis. We �nd that
the comparative statics with respect to the rates of infectivity and recovery may
radically di¤er across steady states, which has important policy implications. Last,
we illustrate the main conclusions of the formal analysis by simulations.
JEL Classification: C73, I18.
Keywords: Economic epidemiology, treatment, prevention, optimal policy mix,
hysteresis, non-convex systems.

1. Introduction
Despite signi�cant achievements in the battle against infectious diseases, e¤ective infec-
tion control remains a formidable challenge.1 Infectious diseases remain one of the major
causes of morbidity and mortality in both developing and developed countries and are a
major strain on public budgets. In parallel with rapid advancements in the biomedical
�eld, there is an ongoing e¤ort to develop strategies to better deploy existing tools and
resources. In particular, it is a priority to determine how di¤erent interventions work at
di¤erent stages of an epidemic (separately and in conjunction) and to determine optimal
policy.
An old adage holds that an ounce of prevention is worth a pound of cure. In the case

of infectious diseases, the relationship between prevention and treatment is complicated
by the presence of externalities. It turns out that determining the right mix of prevention
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and treatment is a delicate matter and signi�cantly more complicated than folk wisdom
might suggest.
To aid policy makers in formulating sensible public policies, it is important to conduct

a systematic analysis of how di¤erent interventions work within a uni�ed framework and
to carefully determine how such interventions interact. To this end, we study a simple
susceptible-infected-susceptible (or SIS) model, in which individuals can be either infected
or susceptible (but never immune).2 We assume that both the infection and recovery rates
can be partially controlled by a benevolent social planner. Speci�cally, we assume that
the planner can lower disease incidence (i.e. the rate of new infections) through costly
preventive e¤ort and/or lower disease prevalence (i.e. the number of infected people)
through costly therapeutic e¤ort.3 We fully characterize the planner�s problem and in so
doing, derive both the optimal policy, steady states and transition paths.
One of the distinct advantages of considering treatment and prevention within a uni-

�ed framework, is that it helps organize and clarify results that are known from single-
instrument models. Thus we can both analyze the interaction of multiple policies and
obtain existing models as special cases. This makes it easier to trace di¤erent e¤ects
to speci�c policy instruments. Despite super�cial similarities, prevention and treatment
are profoundly di¤erent in their e¤ects and desirability for di¤erent levels of disease
prevalence. In particular, while optimal prevention will tend to push prevalence towards
intermediate levels, i.e. towards an interior steady state, optimal treatment will tend to
push prevalence towards the extremes, i.e. towards corner steady states with either very
high or very low infection levels.
In understanding the way prevention and treatment work in reducing infection, it is

instructive to �rst consider each in isolation. There are several important di¤erences be-
tween these two interventions. First, they target di¤erent groups in the population. While
prevention directly targets susceptible individuals and thus disease incidence, treatment
directly targets infected individuals and thus disease prevalence.4 The second (and more
important) di¤erence, lies in the way that the marginal costs and bene�ts from employ-
ing an instrument vary with disease prevalence. For both interventions, we assume that
marginal costs are independent of prevalence.5 But it turns out that the main di¤erence
lies in the way that marginal bene�ts accrue. Whereas the marginal bene�t of preven-
tion is an increasing function of disease prevalence, the marginal bene�t of treatment is
decreasing. In the terminology of Brock and Starrett�s (2003) analysis of shallow lake
management and other non-convex systems, with treatment there is destabilizing positive
feedback. By the same token, with prevention, there is stabilizing negative feedback. It is
the destabilizing e¤ect of treatment that creates the scope for multiple steady states.
In general, for extreme levels of disease prevalence, treatment and prevention will tend

2Diseases that fall in this category include sexually transmitted diseases like chlamydia and gonorrhea.
Applications also include a wide range of other bacterial, viral, fungal and parasitic infections, but
infections have very varied characteristics so care should be taken in determining applicability for a
given disease.

3We focus on temporary measures that must be sustained through time in order to remain e¤ective.
In particular, we exclude vaccinations which confer prolonged (or permanent) immunity.

4Since incidence and prevalence are intimately related, prevention indirectly a¤ects prevalence while
treatment indirectly a¤ects incidence.

5Note that this is the marginal cost, i.e. the cost of treating or protecting �one�more individual.
The total cost of the intervention is trivially increasing in the number of targeted individuals.
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to be strong substitutes and used in very asymmetric proportions, whereas intermediate
prevalence levels lead them to be weaker substitutes, such that it may be optimal to use
them in conjunction.6 Along optimal paths, treatment and prevention are always at their
maximum or minimum possible levels, whereas this is not true once a steady state is
reached.
More generally, we �nd that the system admits a large number of potential steady

states, some of which may coexist. We delineate several possible regimes (which depend
on parameters), which characterize the optimality and multiplicity/uniqueness of steady
states. In Regime I, there is a unique saddle point which is always the endpoint of the
optimal path. In Regime II, there are two saddle points, but only one of these can be
the end point of an optimal path. In Regime III, there are also two saddle points, each
of which is an optimal endpoint for appropriate initial conditions. In this regime, the
optimal policy is path dependent. There is hysteresis in the sense that history, captured
by the initial level of disease prevalence, will determine where it is optimal to take the
system. This means that there may be a discontinuity: as the initial level of infection is
increased, there may be a shift in which steady state is optimal and the solution therefore
changes qualitatively.7

While we prove that the system cannot display limit cycles or spiral sinks, the dynam-
ics may still exhibit complicated behavior such as spiral paths. We show that an optimal
policy never involves such paths, but is a relatively simple function of disease prevalence.
Last, we �nd that the comparative statics results for steady state prevalence with

respect to infectiousness and the rate of recovery, may be radically di¤erent across steady
states. E.g., we �nd that while decreasing the infectiousness of the disease is always
welfare enhancing, the manner in which these gains are realized di¤er from one steady
state to the other. If there is no prevention in the benchmark steady state, then the
optimal policy response to decreased infectiousness may be to increase costly treatment
in the short run in order to drive down infection prevalence to the new steady state. In
turn, steady state welfare is higher in the new steady state, outweighing the additional
costs incurred during the transition. On the other hand, if there is positive prevention in
the benchmark steady state, then the optimal policy response to decreased infectiousness
is to decrease prevention in the short run to increase disease prevalence to the new steady
state. In this new steady state, welfare is lower than before the transition, but this welfare
loss is outweighed by the cost savings due to lack of prevention during the transition to
the new steady state. Because of this lack of robust prescriptions across steady states,
caution is advisable when using comparative statics results to inform public policy.

1.1. Related Literatures. The literature on economic epidemiology is varied and
growing and there are several good surveys, such as Philipson (2000), Gersovitz and
Hammer (2003) and Klein et al. (2007). Of direct relevance to the present work is
research that deals with prevention and treatment, separately or in conjunction.
The earliest contributions, by Sanders (1971), Sethi (1974) and Sethi and Staats

(1978), consider treatment in di¤erent versions of the SIS model from a planner�s per-
spective. Goldman and Lightwood (1995) consider treatment in the SIS model under

6To be precise, treatment and prevention may be used in conjunction for some intermediate prevalence
levels.

7This is a property shared by many economic/ecological models, as surveyed in Dasgupta and Mäler
(2003).
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learning, while Goldman and Lightwood (2002) also study treatment in the controlled
SIS model, but considers di¤erent cost structures than the earlier literature.8 Rowthorn
(2006) and Anderson et al. (2010) extend the analysis of the controlled SIS model to set-
tings with budget and wealth constraints. Toxvaerd (2009a) considers decentralization
to strategic decision makers, while Toxvaerd (2009b) considers the e¤ects of treatment
when recovery confers immunity to further infection.
The literature on prevention is more varied than that on treatment. Sethi (1978)

considers quarantines, while Geo¤ard and Philipson (1996) and Aadland et al. (2010)
consider non-vaccine prevention in the SI and SIS models respectively. Reluga (2009) an-
alyzes prevention by strategic individuals in linked subpopulations, while Reluga (2010)
considers prevention through social distancing. Toxvaerd (2010) analyzes continual pre-
vention in the SIS model and decentralization of optimal policy to strategic decision
makers. There are also important literatures on vaccination and on abstinence, exempli-
�ed by Brito et al. (1991) and Kremer (1996), respectively. The issues dealt with in those
papers are somewhat orthorgonal to the present work and are reviewed in more detail in
Toxvaerd (2010). Greenwood et al. (2009) consider a search-theoretic matching model of
the SI variety and analyze the incentives to form long and short term partnerships.
There are a few papers that explicitly consider multiple instruments. Most related to

our work is that of Gersovitz and Hammer (2004) who, like us, consider prevention and
treatment in an SIS framework. In contrast to us, they bypass the issue of multiplicity
by assuming that there is a unique steady state and that it is an interior one. As we shall
show, this assumption has radical consequences for both the analysis and the conclusions
derived from it. In a short note, Zaman et al. (2007) consider vaccination and treatment
in an SIR setting and simulate optimal paths. A similar exercise is done in Almeder et
al. (2007) for an HIV type disease. Goyal and Vigier (2010) consider a static two stage
model with vaccination and abstinence. Dodd et al. (2010) consider multiple concurrent
interventions and discuss when there are likely to be synergies between these in the sense
that raising the level of one instrument increases the bene�t to increasing the level of
other instruments. Last, Blayneh et al. (2009) consider prevention and treatment in a
setting with a vector-borne disease. Apart from Gersovitz and Hammer (2004), these
papers are similar to ours only in spirit and their analyses are not directly comparable to
the one we carry out.
For completeness, we should also mention some related contributions that do not

deal directly with infection control, but which share structural features with our work.
Feichtinger (1984) studies conditions for synergies between multiple controls in non-linear
dynamic systems. Although related to our work, his results do not apply to our setting.
Behrens et al. (2000) analyze a model of the spread of drug use, in which both treatment
and prevention can reduce the prevalence of addiction and in which the habit of drug use
spreads in the population like an infection. Interestingly, they �nd that at early stages
of the epidemic, prevention should take precedent whereas at later stages, the optimal
policy is to treat the addiction. Such a policy is the mirror image of the optimal policy in
the present setting, in which high treatment (and low prevention) is the optimal response
at low levels of disease prevalence and high prevention (and no treatment) is optimal for
high levels of disease prevalence.

8Goldman and Lightwood (2002)�s analysis focuses mainly on necessary conditions for optimality and
provide an informal analysis using phase diagrams.
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Last, our paper contributes to an important literature on equilibrium multiplicity and
history dependence in systems with non-convexities, as surveyed in Dasgupta and Mäler
(2003) and Deissenberg et al. (2004). Of particular relevance to our work is the literature
on the optimal management of shallow lake systems, such as Brock and Starrett (2003),
Mäler et al. (2003) and Wagener (2003). It turns out that important results from that
literature can be brought to bear on the management of infectious diseases.
The remainder of the paper is structured as follows. In Section 2, we outline the

classical susceptible-infected-susceptible model. In Section 3, we introduce the economic
version of the model and partially characterize the optimal policies. In Section 4, we
characterize the steady states of the system and the optimal paths formally. In Section 5,
we describe the equilibria and dynamics of the model and interpret the central features
driving the results. In Section 6, we perform some simple comparative analysis, consider
welfare and draw some policy conclusions. In Section 7 we illustrate some of the main
points of the analysis via simulated examples. In Section 8, we outline a number of
extensions of our model and discuss robustness of our results to these changes. Section 9
concludes. Most proofs are found in the Appendix.

2. The Classical Model
To make the exposition self-contained, we will start by expounding the classical epidemi-
ological version of the susceptible-infected-susceptible model in some detail. This will
not only aid in understanding the economic model that follows, but also highlight the
contrast in predictions based on the separate modeling approaches.
The classical susceptible-infected-susceptible model is simple to describe.9 Time is

continuous and runs inde�nitely. A population P =[0; 1] consists of a continuum of
in�nitely lived individuals who can at each instant t � 0 each be in one of two states,
namely susceptible or infected. The set of infected individuals is denoted by I(t) and
has measure I(t), while the set of susceptible individuals is denoted by S(t) and has
measure S(t). Because the population size is normalized to unity, these measures can be
interpreted as fractions. Henceforth, I(t) shall be referred to as disease prevalence.
At each instant, the population mixes homogeneously. This corresponds to pair-

wise random matching where each individual has an equal chance of meeting any other
individual, irrespective of the health status of the two matched individuals. Whereas a
match between two infected individuals or two susceptible individuals does not create any
new infection, a match between an infected and a susceptible individual may. The rate
at which infection is transferred in such a match is denoted by � > 0. This parameter
captures the infectivity of the disease. Coupled with the assumption of homogeneous
mixing, this means that the rate at which susceptible individuals become infected is
given by the simple expression �I(t)S(t). Thus the rate of new infection, or disease
incidence, is proportional to disease prevalence.10 Note that while disease incidence is a
�ow, disease prevalence is a stock.
Infected individuals recover spontaneously at rate 
 � 0. This means that the rate

9See Anderson and May (1991), Daley and Gani (2001) or Keeling and Rohani (2008) for good
introductions and applications.
10The term �I(t)S(t) should be thought of as the rate at which susceptible individuals have contact

with other individuals, multiplied by the probability of the contact being with an infectious individual,
multiplied by the probability that the infection is transmitted in such a contact. See e.g. Keeling and
Rohani (2008) for a detailed derivation.
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at which infected individuals become susceptible is given by 
I(t). Figure 1 shows the
stocks and �ows of susceptible and infected individuals diagrammatically. The dynamics
of the model are described by the following system of di¤erential equations:

_S(t) = I(t) [
 � �S(t)] (1)
_I(t) = I(t) [�S(t)� 
] (2)

I(t) = 1� S(t); I(0) = I0 (3)

Using the normalization, this system reduces to the following simple logistic growth equa-
tion:

_I(t) = I(t) [�(1� I(t))� 
] ; I(0) = I0 (4)

The steady states of this system are

I� = 0; I� =
� � 

�

(5)

For � > 
, the stable steady state is endemic while for � < 
, the relevant and stable
steady state involves eradication. In other words, if the rate at which individuals become
infected surpasses the rate at which they recover, then some positive fraction of the
population will always be infected. If recovery is not possible, the entire population ends
up being infected. On the other hand, if individuals recover at a higher rate than the
rate at which they become infected, then the disease eventually dies out. Last, note that
the endemic steady state disease prevalence is increasing in infectivity and decreasing in
the rate of recovery.
At the aggregate level, there is no uncertainty and thus the probability that a ran-

domly chosen individual is infected must coincide with the fraction of infected individuals.
From the perspective of an infected individual, the transition to susceptibility is governed
by a Poisson process with rate 
, which is memoryless. Similarly, for a �xed level of ag-
gregate infection I(t), the transition to infectivity for a susceptible individual is governed
by a Poisson process with rate �I(t). Thus transition probabilities are memoryless, a
fact that greatly simpli�es the analysis that follows. This completes the description of
the classical SIS model.

3. The Economic Model and Optimal Policies
In the economic version of the model, each individual earns �ow payo¤s that depend
on the state of their health. For simplicity, assume that an individual earns �ow payo¤
!S while susceptible and !I < !S while infected. It shall prove useful to introduce
the health premium ! � !S � !I > 0. The future is discounted at rate � > 0. The
basic epidemiological parameters � > 0 (infectiousness) and 
 > 0 (background rate of
spontaneous recovery) are retained from the classical model.
The two policy instruments at the planner�s disposal are prevention and treatment.

These instruments in�uence the �ows from S(t) to I(t) and from I(t) to S(t) respectively.
Speci�cally, the planner can set some level of prevention �(t) 2 [0; 1] at time t � 0, which
translates into e¤ective disease incidence (1� �(t))�I(t)S(t). The factor (1� �(t)) can
be thought of as the proportion of susceptible individuals who is exposed at time t � 0.
Turning to treatment, the planner can set the level of treatment �(t) 2 [0; 1] at time t � 0,
which translates to an e¤ective recovery rate (�(t)� + 
). Here, � > 0 is the e¢ ciency
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Figure 1: Stocks and �ows in the classical model.

of treatment in inducing recovery. Last, the individual costs of protection and treatment
are cP � 0 and cT � 0 respectively. Note the mnemonic notation: � denotes treatment
and � denotes prevention. We should add that an equivalent interpretation is that each
susceptible individual is exposed at intensity (1� �(t)) and that each infected individual
is treated at intensity �(t). Figure 2 shows the stocks and �ows in the controlled version
of the model.
We now consider the optimal control of the SIS system from the perspective of a

benevolent social planner. The planner�s objective is assumed to be a straightforward
sum of the individuals� in�nite horizon, discounted expected utilities. The planner�s
problem is therefore to solve the following programme:

max
�(t);�(t)2[0;1]

Z 1

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (6)

s:t: _I(t) = I(t) [(1� �(t))�(1� I(t))� 
 � �(t)�] ; I(0) = I0 (7)

The optimal value function for this programme is denoted by V �(I0), where depen-
dence on the parameters has been suppressed for ease of notation.
Throughout, we maintain the following:

Assumption We assume that (i) ! � cP > 0 and (ii) � � 
 � � > 0.

The former inequality implies that a policy without any treatment, but with a strictly
interior level of prevention, cannot eradicate infection even asymptotically. The latter
inequality implies that a policy without prevention, but with maximal treatment, cannot
eradicate infection even asymptotically.
Note that this environment is stationary and that the problem to be solved is au-

tonomous, i.e. time enters in the integrand only through the discount term e��t.
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Figure 2: Stocks and �ows in the controlled model.

An admissible solution is a triple of functions (I(t); �(t); �(t)) in which for all t � 0,
I(t) satis�es the logistic growth equation (7)and where �(t); �(t) 2 [0; 1]. Furthermore,
the policies �(t); �(t) must be piecewise continuous. Let �(t) denote the current-value
costate variable (or multiplier). It is required to be piecewise continuously di¤erentiable.
Before embarking on the detailed analysis of the model, we ensure that the planner�s

problem admits an optimal solution:

Theorem 1. An optimal solution (I�(t); � �(t); ��(t)) exists if at least one of the �xed
points A;B;A0; B0 (to be speci�ed below) is feasible.

Proof: See Appendix A �

The existence proof relies on existence of optimal solutions in truncated versions of
the problem and is by contradiction. The quali�cation in the statement of the result is
that at least one �xed point be feasible and does not require that the steady state be
optimal. This is an implicit restriction on the allowable parameter constellations and is
a sensible requirement.
Turning to the characterization of the optimal policy, the current-value Hamiltonian

is given by

H = �!I(t)� cP�(t)(1� I(t))� cT �(t)I(t)
+�(t)I(t) [(1� �(t))�(1� I(t))� 
 � �(t)�] (8)

Note that the current-value Hamiltonian is linear in both control variables, which has
important implications for the characterization of optimal policies.
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The evolution of the costate variable is given by

_�(t) = ��(t)� @H

@I(t)
(9)

= �(t) [�+ 
 + ��(t) + �(2I(t)(1� �(t)) + �(t)� 1)]
+ [! + �(t)cT � �(t)cP ] (10)

In general, the steady state is given by the solution to the system _I(t) = _�(t) = 0, i.e.

I(t) =
�(1� �(t))� 
 � ��(t)

�(1� �(t)) (11)

�(t) =
! + �(t)cT � �(t)cP


 � �(1� �(t))� �+ ��(t) (12)

For a path to be optimal, the policy instruments (�(t); �(t))must maximise the Hamil-
tonian (8). This yields the following necessary conditions for optimality. Optimal treat-
ment is given by the bang-bang solution

�(t) = 0 if ��(t) > �cT (13)

�(t) 2 [0; 1] if ��(t) = �cT (14)

�(t) = 1 if ��(t) < �cT (15)

In turn, optimal prevention is given by the bang-bang solution

�(t) = 0 if ��(t)I(t) > �cP (16)

�(t) 2 [0; 1] if ��(t)I(t) = �cP (17)

�(t) = 1 if ��(t)I(t) < �cP (18)

These policies simply state that if the marginal bene�t of increasing an instrument
(i.e. treatment or prevention) exceeds the marginal cost of doing so, then it is optimal to
increase the level of the instrument. Similarly, if the marginal cost exceeds the marginal
bene�t, then it is optimal to decrease the level of the instrument. Last, when the marginal
cost equals the marginal bene�t, the optimal policy is not determined.

Recall that �(t) < 0 is the (negative) social utility associated with a marginal increase
in disease prevalence. With this in mind, it is straightforward to interpret the optimal
policies in terms of the marginal costs and bene�ts of intervention. In the case of treat-
ment, the marginal bene�t of intervention is given by ���(t), which follows from the fact
that � is the rate at which increased treatment induces recovery (i.e. it is the e¢ ciency
of treatment) and each recovery bene�ts society at level ��(t). In the case of preventive
e¤ort, the marginal bene�t of intervention is given by ��I(t)�(t). This follows since
�I(t) is the rate at which unprotected susceptible individuals become infected and each
infected individual costs society �(t).

Figure 3 illustrates the areas in (I(t); �(t))-space in which the di¤erent policy combi-
nations are optimal and indicates the di¤erent feasible steady states.
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Figure 3: Optimal policies and typology of steady states.

4. Optimal Paths and Steady States
We will now proceed with a detailed analysis of the optimal paths and the steady states
of the system, through a number of propositions. In the next section, we will o¤er a more
informal description of these results.
The system of di¤erential equations for the state variable (disease prevalence) and the

costate variable has six potential �xed points, which we will denote by (A;B;C;A0; B0; C0)
respectively. As will become clear, the �xed points can be sensibly grouped as (A;B;C)
and (A0; B0; C0).

Proposition 2. The dynamic system admits six potential steady states. These are char-
acterized as follows: Solution A : � � = 0 and �� 2 (0; 1). Solution B: � � = 1 and
�� 2 (0; 1). Solution C: � � 2 (0; 1) and �� 2 (0; 1). Solution A0: � � = 0 and �� = 0.
Solution B0: � � = 1 and �� = 0. Solution C0: � � 2 (0; 1) and �� = 0.

From this proposition, it follows that in steady state, treatment can be either at the
highest possible level, the lowest possible level or at an intermediate level. Prevention,
in contrast, is either at the lowest possible level or at an intermediate level. Steady
states with subscript �0�are those that involve no prevention, whereas those without a
subscript denote steady states with a positive amount of prevention. The di¤erent steady
state values are listed in Section 4.1. For each set of parameters, only a subset of these
steady states are feasible. The relevant feasibility conditions are set out in Appendix B.
Whereas the steady state may involve keeping prevention at an interior level, the

approach to a steady state always involves maximal or minimal levels of the two policy
instruments, as the following result shows:

Proposition 3. The optimal policy is always of the bang-bang variety. Along the ap-
proach path to a steady state, both �(t); �(t) 2 f0; 1g for all t � 0, except at a �nite
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number of points where there is an instantaneous switch from one control regime to
another.

Proof: Follows directly from the characterization of the optimal policies and the phase
diagram �

Since optimal policies generically take extreme values on transition paths while pos-
sibly intermediate values once steady state is reached, optimal policies may be expected
to have discontinuities in steady state (for some parameter constellations).
Because the planner�s problem is autonomous and involves a single state variable,

optimal prevalence paths are necessarily monotone time. This means that an optimal
path cannot bend back on itself in (I(t); �(t))-space. Owing to the bang-bang nature of
the optimal policies, the monotonicity implies that only a limited number of policy regime
switches can occur in approaching a steady state. In particular, we have the following
result:

Proposition 4. Along an optimal path, there will be at most four switches of regime.
At most one switch from �(t) = 0 to �(t) = 1, at most one switch from �(t) = 1 to
�(t) = 0, at most one switch from �(t) = 0 to �(t) = 1 and at most one switch from
�(t) = 1 to �(t) = 0.

The monotonicity of disease prevalence along optimal paths, coupled with the bang-
bang characteristic, means that optimal policies can be characterized as simple functions
of disease prevalence as follows:

Corollary 5. Along an optimal path, if there are regime switches in treatment or pre-
vention respectively, optimal policies are as follows: (i) For �xed � 2 [0; 1], there is a
unique Î(�) 2 [0; 1] such that

�(t) = 0 if I(t) > Î(�) (19)

�(t) 2 [0; 1] if I(t) = Î(�) (20)

�(t) = 1 if I(t) < Î(�) (21)

(ii) For �xed � 2 [0; 1], there is a unique Î(�) 2 [0; 1] such that

�(t) = 0 if I(t) < Î(�) (22)

�(t) 2 [0; 1] if I(t) = Î(�) (23)

�(t) = 1 if I(t) > Î(�) (24)

This means that any policy along optimal paths can be fully characterized in terms
of a few critical levels of disease prevalence which indicate when the policy instruments
should be switched between their extreme levels (until steady state is reached).
That full prevention is not possible in an optimal steady state is shown next.

Proposition 6. At any optimal steady state (I�; ��), the level of prevention �� < 1.
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Proof: See Appendix C �
The proof shows that a policy that keeps �� = 1 in steady state does not satisfy the

transversality condition for an optimal path.
While there may be several potential steady states, it turns out that the fully interior

ones, in which the treatment instrument is kept at an interior level, are never the end
points of optimal paths. This result signi�cantly simpli�es the description of the optimal
policy. Formally, we have the following:

Proposition 7. No optimal path converges to either C or C0.

Proof: See Appendix D �
Since the interior points that we have just ruled out are characterized by interior levels

of the treatment instrument, the following corollary is immediate:

Corollary 8. An optimal path always converges to a steady state at which � � 2 f0; 1g.

In order to further reduce the set of steady states that should be considered for a
given set of parameters, the following result usefully shows that one can focus attention
on one or the other of two sets of steady states as follows:

Proposition 9. Depending on the parameter values, at least one and at most two of
the steady states A;A0; B;B0 is the end point of an optimal path. For any given set of
parameter values, it is not possible for both A and A0, for both B and B0 or for both C
and C0 to be �xed points.

Proof: Follows directly from the parameter restrictions in Appendix B �
Potential steady states are indicated in Figure 3. The triple (A;B;C) straddle

the boundary between the no prevention and full prevention areas, whereas the triple
(A0; B0; C0) is situated in the no prevention area. Similarly, whereas the steady states
(A;A0) are in the no treatment area and the steady states (B;B0) are in the full treatment
area, the steady states (C;C0) both straddle the boundary between the no treatment and
the full treatment areas.

4.1. Steady State Values. The di¤erent steady states are given as follows:

Solution A: This case corresponds to �(t) = 0 and �(t) 2 (0; 1). The steady state
solution is then

IA � �cP
�(! � cP )

(25)

�A � cP � !
�

(26)

�A � cP (� � 
 + �) + !(
 � �)
cP (� + �)� �!

(27)

�A � 0 (28)
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Solution B: This case corresponds to �(t) = 1 and �(t) 2 (0; 1). The steady state
solution is then

IB � �cP
�(cT + ! � cP )

(29)

�B � cP � ! � cT
�

(30)

�B � cP (� � 
 + �� �) + (! + cT )(�+ 
 � �)
cP (� + �)� �(! + cT )

(31)

�B � 1 (32)

Solution C: This case corresponds to �(t) 2 (0; 1) and �(t) 2 (0; 1). The steady state
solution is then

IC � �cP
�cT

(33)

�C � �cT
�

(34)

�C � 2�cP � �! + cT (
 + �� �)
�cP � �cT

(35)

�C � �cP � �! + �cT
�cT

(36)

Solution A0: This case corresponds to �(t) = 0 and �(t) = 0. The steady state solution
is then

IA0 � � � 

�

(37)

�A0 � �!
� � 
 + � (38)

�A0 � 0 (39)

�A0 � 0 (40)

Solution B0: This case corresponds to �(t) = 1 and �(t) = 0. The steady state solution
is then

IB0 � � � 
 � �
�

(41)

�B0 � ! + cT
�� � + 
 � � (42)

�B0 � 0 (43)

�B0 � 1 (44)

Solution C0: This case corresponds to �(t) 2 (0; 1) and �(t) = 0. The steady state
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solution is then

IC0 � �! + cT (� � 
 � �)
2�cT

(45)

�C0 � �cT
�

(46)

�C0 � 0 (47)

�C0 � ��! + cT (� � 
 + �)
2�cT

(48)

Based on these values, some important observations follow:

Proposition 10. (i) Steady states with positive treatment have lower disease prevalence
than steady states with no treatment, i.e. IA > IB and IA0 > IB0 . (ii) Steady states with
positive prevention have lower disease prevalence than steady states with no prevention,
i.e. IA < IA0 and IB < IB0.

Proof: Part (i) follows from direct inspection. Part (ii) follows from the fact that the
conditions that ensure that the no prevention steady state prevalence levels are higher
than the positive prevention steady state prevalence levels, are exactly the opposite of
the conditions that must hold for prevention to be zero in the no-prevention steady states
�
These results are not trivial, since prevention and treatment both work to reduce

infection. It is therefore conceivable that the lack of one instrument is compensated for
by an increase in the other instrument to the extent that prevalence ends up at a lower
level than it otherwise would have been.
The next result follows from direct inspection of the relevant steady state prevention

levels:

Proposition 11. In the steady states with positive prevention, the no treatment steady
state involves more prevention than the full treatment steady state, i.e. �A > �B.

We can summarize the ranking of the steady state prevalence levels as follows:

IB � min fIA; IB0g � max fIA; IB0g � IA0

The prevalence levels IA and IB0 are not unambiguously ranked.
11 But the condition that

ensures that �B0 = 0 implies the condition that ensures that IA � IB0.
When multiple steady states coexist, we can talk of a high prevalence steady state and

a low prevalence steady state. In the former, prevention is at a high level while treatment
is at a low level. In the latter, prevention is at a low level while treatment is at a high
level.
An important observation is in order. In the steady states involving no prevention, i.e.

(A0; B0), steady state disease prevalence levels depend only on biological parameters that
characterize the disease (such as infectiousness and recovery rate) and not on the economic
parameters (such as costs and payo¤s). In contrast, in the steady states involving positive

11It is easy to check that IA � IB0
if and only if cP � !

�
��
��
��
��+�

�
.
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prevention, i.e. (A;B), steady state disease prevalence levels depend on both the biological
and the economic parameters of the problem. In fact, in the no prevention steady states,
the prevalence levels closely mirror those of the endemic steady state of the classical
model. In the steady state with no treatment, the correspondence is exact, whereas in
the steady state with full treatment, the e¤ective recovery rate is modi�ed to (
 + �).

5. Description of the Dynamics
In order to clearly draw out the e¤ects of treatment and prevention on the overall behavior
of the system, it is instructive to consider the polar cases in which there is either treatment
or prevention alone. When the only feasible intervention is treatment, the system will
display a similar overall behavior as the present model. Speci�cally, there will (subject
to the right parameter constellations) be two corner steady states, one with low disease
prevalence (or eradication) and another with high disease prevalence. In the former, the
optimal policy is to fully treat whereas in the latter, the optimal policy is to not treat at
all. As in the present model, there is an interior unstable steady state which is a spiral
source (see Rowthorn, 2006 and Toxvaerd, 2009a). The upshot of this is that the presence
of prevention does not alter the steady state levels of treatment, although it does alter
the steady state levels of disease prevalence and the equilibrium paths.
Turning to a model with prevention only, in such a setting it turns out that there

is a unique steady state, in which the optimal policy (i.e. level of preventive e¤ort) is
interior and in which disease prevalence is at an intermediate level (see Toxvaerd, 2010).
It follows that the presence of treatment has a very stark e¤ect on the system, in�uencing
both the steady state levels and the equilibrium paths, but also the number of steady
states.
The key to understanding the di¤erences between treatment and prevention is to con-

sider how the marginal bene�ts of each instrument depend on disease prevalence. In the
case of prevention, the marginal bene�ts are increasing in prevalence: other things being
equal, higher disease prevalence increases the risk of infection for susceptible individuals
and hence increases the return from prevention.
Turning to treatment, the time pro�le of the bene�ts is more complex than that for

prevention in that the bene�ts accrue in the future. Treatment increases the proportion
of time that a typical individual will spend in the susceptible state. For a given sus-
ceptible individual, the probability of infection (or reinfection) is proportional to disease
prevalence. The value of treating an individual in the present is therefore a decreasing
function of future prevalence. As current treatment is increased, future prevalence de-
creases, making current and future treatment even more attractive. This virtuous circle
(which is formally a complementarity property of the planner�s problem) means that with
treatment, the marginal bene�ts are decreasing in prevalence. This is exactly what cre-
ates the scope for multiple steady states. In the low infection steady state, the marginal
bene�ts from treatment are high and treatment is thus exerted at the highest possible
level, thereby maintaining low infection. In the high infection steady state, the marginal
bene�ts of treatment are low and therefore there is no treatment at all. This keeps the
infection at a high level.
Once both instruments are available, the forces described above are essentially super-

imposed. The presence of treatment creates the potential for multiple steady states, even
in the presence of prevention (although the levels are altered accordingly). In the full
treatment steady state, disease prevalence is relatively modest. But this means that the
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marginal bene�t of prevention is relatively low, resulting in a low steady state level of
prevention. In contrast, in the no treatment steady state, disease prevalence is relatively
high, leading to high marginal bene�ts of prevention. As a consequence, the prevention
level is relatively high.
The coexistence of these e¤ects has curious implications, as the following feature of

the system shows. For su¢ ciently low prevention costs, the unique steady state involves
a low level of infection (point B). In this steady state, there is full treatment of infected
individuals and relatively little preventive e¤ort, targeted at susceptible individuals. In
contrast, for su¢ ciently high prevention costs, the unique steady state involves a high level
of infection (point A). In this steady state, there is no treatment at all but a relatively
high level of prevention. On the face of it, this seems to be highly counter-intuitive and
even Gi¤enesque.12

How does one make sense of the observation that higher prevention costs lead to a
steady state with a higher level of prevention? Before answering this question, we note
that a similar result holds with respect to the treatment costs. Namely, for low enough
treatment costs, the unique steady state is the high prevalence steady state with no
treatment, while for su¢ ciently high treatment costs, the unique steady state is the low
prevalence steady state with full treatment of infected individuals.
An explanation of this seemingly paradoxical phenomenon is as follows. For su¢ -

ciently high costs of disease reduction, i.e. high treatment or prevention costs, the steady
state will involve a high level of infection. But for high levels of infection, the marginal
bene�ts of treatment are low, while the marginal bene�ts of prevention are high. Conse-
quently, the optimal policy in such a steady state is to have no treatment but to have a
relatively high level of preventive e¤ort. Similarly, for low costs of disease reduction, the
steady state will involve a low level of infection. For low prevalence levels, the marginal
bene�ts of treatment are high, while the corresponding marginal bene�ts of preventive
e¤ort are low. Thus in such a steady state, the optimal policy prescribes full treat-
ment coupled with a more modest level of prevention. In each steady state, prevention
and treatment are imperfect substitutes and the intervention with the highest marginal
bene�ts dominates in the optimal policy mix.

5.1. Informal Bifurcation Analysis. Following Wagener (2003), we can usefully
divide the parameter space into three di¤erent regimes as follows. In Regime I, there
is a unique optimal steady state from the set fA;B;A0; B0g. Which of these is feasible
depends on the particular parameter constellation in question. In Regime II, there are
four potential pairs of stable equilibria, namely f(A;B); (A0; B0); (A;B0); (A0; B)g, each
possibly with an accompanying unstable equilibrium from the set fC;C0g. From each
such pair of stable steady states, one or the other equilibrium is always optimal, i.e. is
the end point of an optimal path for all initial conditions (i.e. the steady state is globally
optimal). In Regime III, there are again four possible pairs of stable equilibria (possibly
with corresponding unstable equilibria) like in Regime II, but di¤erent initial conditions
render di¤erent equilibria optimal. In this scenario, there is an indi¤erence (or Skiba)
point IS 2 (0; 1) such that for prevalence levels above this threshold, the high infection
12These comments do not apply to the �xed points (A0; B0), since these involve no prevention. In

these cases, high treatment costs lead to a low treatment steady state being feasible, while low treatment
costs lead to a high treatment steady state being feasible. In either case, su¢ ciently large prevention
costs ensure that there is no prevention in steady state.
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steady state is optimal, while for prevalence levels below it, the low infection steady state
is optimal.
Even though the interior solutions cannot be end points of optimal paths, it is tempt-

ing to think that they demarcate intervals of the state variable from which it is optimal
to go to one steady state or the other. For example, it might seem natural that for
prevalence levels I(t) < IC , the optimal policy is to go to the low infection steady state
IB while for prevalence levels I(t) > IC , the optimal policy is to go to the high infection
steady state IA. In fact, this turns out to be wrong. While the optimal policy may indeed
have the threshold character just described, the critical prevalence level IS is generically
di¤erent from the interior steady state.13

For a given set of parameters, it is a routine matter to check the conditions in Ap-
pendix B and determine whether Regime I obtains or not. In order to determine whether
the system is in Regime II or III, there is no option but to compute values along all
(typically two) paths satisfying the necessary conditions for optimality. This is because
the existence of the indi¤erence (or Skiba) point that distinguishes Regimes II and III
cannot be formally characterized by a local condition in the same way that local extrema
can (see Deisssenberg et al. 2004). This is so since the indi¤erence point is obtained as
the point of intersection of two functions for which there are no closed form solutions,
namely the value functions evaluated along the di¤erent candidate paths.14

To emphasize the richness of possibilities, note how the number and character of
equilibria of the model changes when one moves through the di¤erent possible parameter
constellations of the model. The following possibilities can occur: (i) There is a unique
steady state in which there is low prevalence, little prevention and high treatment; (ii)
there are two steady states, one with low prevalence, low prevention and high treatment
and another with high prevalence, high prevention and low treatment; it is always op-
timal to converge to the former steady state; (iii) there are two steady states, one with
low prevalence, low prevention and high treatment and another with high prevalence,
high prevention and low treatment; which steady state is optimal depends on the initial
conditions; (iv) there are two steady states, one with low prevalence, low prevention and
high treatment and another with high prevalence, high prevention and low treatment; it
is always optimal to converge to the latter steady state; (v) there is a unique steady state
in which there is high prevalence, high prevention and low treatment. In all cases except
(iii), it is easy for the planner to determine where to steer the system, but the optimal
policy mix must still be determined. In case (iii), there is the additional complication
that there are two competing steady states and the planner must therefore compute the
values of steering the system e¢ ciently to either steady state and then compare these.

5.2. Optimal Paths, Spiral Sources and Limit Cycles. Although the interior
points C and C0 cannot be end points of optimal paths, it is necessary to consider the
behavior of paths starting at these points. Our simulations show that such paths may be
spirals, but formally showing that this is the case is complicated by the fact that standard
results for the local behavior around such points do not apply to our problem. This is
due to the discontinuities in the optimal policies in steady state. In characterizing the
candidate solutions for optimal paths, there is a further potential complication, namely

13This property does hold when the Hamiltonian is concave, as described in Deissenberg (2004).
14Wagener (2003) develops su¢ cient conditions for such a point to exist and be unique.
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the possibility that the paths close to the interior steady states constitute limit cycles
(i.e. closed orbits around the interior point). We will now show two results. First, we
show that the interior solutions are indeed spiral sources, i.e. exploding spirals. We prove
this result by appealing to a theorem due to Wagener (2003), which excludes limit cycles.
We then extend his reasoning to exclude that the interior points are spiral sinks. By
implication, the points must be spiral sources. Second, having established the spiraling
nature of paths originating at the interior solutions, we characterize the candidate optimal
paths.

Proposition 12. The points C and C0 are clock-wise spiral sources.

Proof: The proof is in two parts. In Appendix E, we prove that the movement around
the interior solutions is characterized by clock-wise rotation. In Appendix F, we show
that the movement is necessarily an exploding spiral �

As discussed earlier and emphasized by the fact that the interior points are spiral
sources, the Hamiltonian conditions do not pin down candidate optimal paths uniquely.
It turns out that there is a simple way to determine these from a given spiraling path, as
the next result shows:

Proposition 13. A candidate optimal path starting at the prevalence levels associated
with points C or C0 is the highest or lowest monotone segment of the spiral.

Proof: See Appendix G �

Since we know that optimal paths may form part of an explosive spiral, this result is
of direct practical importance.
In our simulations, we have identi�ed the following interesting pattern. In Regime

II, where one steady state dominates the other steady state for all initial conditions, the
candidate optimal path to one steady state forms part of a spiral, whereas the candidate
optimal path to the other does not. In both scenarios, the non-spiraling path turns out
to be the optimal one. In Regime III, i.e. the case in which there is a Skiba point, paths
to both steady states form parts of nested spirals emanating from a common source.
Wagener (2003) and Mäler et al. (2003) show that if there are two nested spirals that
lead to distinct equilibrium points, then there exists a unique Skiba point, which is also
what we �nd in simulations. Of course, this does not a priori mean that if there is only one
spiraling path, then there is necessarily not a Skiba point. While we have not attempted
a formal analysis of these observations in our setting, these seem worthwhile pursuing in
future work.15

To conclude, we have found that the �xed points (A;B;A0; B0) are saddle points (if
feasible), while the �xed points (C;C0) are spiral sources.

15Note however that when there are two spiraling paths to the high and low infection steady states
respectively, then the results of Wagener (2003) and Mäler et al. (2003) apply and there exists a unique
Skiba point. This observation formally con�rms a similar point made by Goldman and Lightwood (2002).
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5.3. Substitutes, Complements and Speeds of Convergence. In a static model,
a common de�nition of complementarities is that an increase in the level of one instrument
increases the marginal rate of return on the other instrument. An important question in
the present context is whether prevention and treatment display a similar property. For
non-linear multiple-instrument optimal control problems, there are instances in which
one may cleanly characterize �synergies�between the control variables, i.e. instances in
which raising one control variable makes it more desirable to also raise the other (see
Feichtinger, 1984). In the present model, the desirability of increasing one instrument
depends on the level of the other instrument through its e¤ects on disease prevalence. In
fact, changing the level of either instrument in�uences disease prevalence, which in turn
changes the desirability of further changing both instruments.
To see this, consider an increase in the level of prevention. Such an increase will

decrease disease prevalence, thereby increasing the marginal bene�ts of treatment, but
also decreasing the marginal bene�t of prevention. Similarly, an increase in treatment
will cause a decrease in disease prevalence, thereby increasing the marginal bene�ts of
treatment, but decreasing the marginal bene�ts of prevention.
These interactions are simply a re�ection of the insight that treatment induces a

positive feedback e¤ect, whereas prevention induces a negative feedback e¤ect.
Almost no existing work discusses the optimal phasing of prevention and treatment.

An exception is Gersovitz and Hammer (2004), who arrive at the conclusion that

�...[optimal] subsidization [to treatment and prevention] is at equal rates be-
cause it is equally bene�cial in preventing further infection to get a person
out of the infected pool as to have prevented the person from getting into it
in the �rst place [...]�

This statement seems to suggest that treatment and prevention are perfect substitutes
in the steady state of their model that they consider. Our analysis shows that prevention
and treatment are imperfect substitutes. Having said that, there are clearly instances
in which the two instruments are used in conjunction. This stems from the fact that at
some levels of disease prevalence, the strength of substitutability is low enough to render
the use of both instruments optimal. This observation is intimately connected to the
property of optimal paths being of the most rapid approach variety (MRAPs for short),
to which we turn next.
When each policy is considered in isolation, optimal paths are known to be of this type

in the prevention model but not in the treatment model (see Toxvaerd 2009a, 2010).16

But in the present setting, this is not necessarily the case. The reason lies in the fact
that the marginal bene�ts of treatment are decreasing in prevalence whereas the marginal
bene�ts of prevention are increasing in prevalence. This feature of the planner�s problem
implies that when approaching a steady state from below and starting from very low
prevalence levels, the optimal policy may involve no prevention coupled with full treat-
ment of the (relatively few) infected individuals. As discussed earlier, this is because for
low prevalence levels, the probability of reinfection is relatively modest, making treatment
worthwhile, but prevention suboptimal. This implies that infection is not increasing as

16More precisely, paths are always MRAPs in a setting in which recovery can only happen via treat-
ment. If there is also spontaneous recovery, then the optimal path to the steady state from above involves
no treatment, which is not an MRAP.



20 Rowthorn and Toxvaerd

fast as it could. Once prevalence has increased to a level that makes further treatment
undesirable, the path does become a MRAP. Similarly, when approaching a steady state
from above, the optimal path may involve no treatment even though there is full preven-
tion. Again, this is because for very high prevalence levels, reinfection probabilities are so
high that treatment becomes suboptimal but the marginal bene�ts of prevention are high
enough to justify using this instrument to its fullest extent. But this means that disease
prevalence does not decrease as fast as possible towards its steady state level. When (and
if) prevalence has decreased to a level that makes treatment optimal, the remaining path
also becomes a MRAP. In Regime III, i.e. in the case where there is a Skiba point, there
is also an interior region in which optimal paths are not most rapid approach paths.
Formally, any path that spends time in areas in which (�(t); �(t)) = (0; 1) or (�(t); �(t)) =

(1; 0), are not of the most rapid approach type. The same is true for any decreasing path
in the area (�(t); �(t)) = (1; 0). This implies the following observations:

Proposition 14. (i) The optimal path to point A from the right is not a MRAP, while
the optimal path from the left is potentially a MRAP. (ii) The optimal path to point
B from the left is not a MRAP, while the optimal path from the right is potentially
a MRAP. (iii) The optimal path to point A0 from the right is not a MRAP, while the
optimal path from the left is potentially a MRAP. (iv) Optimal paths to point B0 are
not MRAPs from either direction.

We can further state the following:

Proposition 15. For all paths that are potentially MRAPs, the closing segments of the
paths are MRAPs.

The previous two propositions deserve some further comments. As can be seen from
3, all paths described as �potential MRAPs�may involve initial segments in which the
system does not approach the steady state as fast as possible. It is in this sense that they
are potentially most rapid approach paths. Having said that, all these paths share the
feature that as the system moves close enough to the steady state, the paths enter regions
where they do approach steady state as rapidly as possible. Thus, although some paths
are not MRAPs along their entire length, their closing segments have this property.
We now turn to the behavior of the system close to the steady states. The speed

of convergence towards a steady state (I�; � �; ��) is found via the �rst-order Taylor
approximation17 of the logistic growth equation around the steady state, i.e.

�(I�; � �; ��) � � [(1� ��)�(1� 2I�)� �� � � 
] (49)

Because the optimal amount of preventive e¤ort may have a discontinuity at some steady
states, we need to distinguish speeds of convergence when approaching the steady state
from the left and from the right respectively. We will denote by ��(I�; � �; ��) and
�+(I

�; � �; ��) the speeds when approaching from the left and right respectively, and

17It is given by the equation

_I(t) � I� [(1� ��)�(1� I�)� 
 � ���] + (I(t)� I�) [(1� ��)�(1� 2I�)� ��� � 
]
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�(I�; � �; ��) when there is no need to distinguish the direction (because the two speeds
coincide). With this notation, the speeds are given as follows:

�+(IA; 0; 1) = 
 (50)

��(IA; 0; 0) = 
 +
cP (� + 2�)� �!

! � cP
(51)

�+(IB; 1; 1) = �+ 
 (52)

��(IB; 1; 0) = �+ 
 +
cP (� + 2�)� �(! + cT )

cT + ! � cP
(53)

�(IA0 ; 0; 0) = � � 
 (54)

�(IB0 ; 1; 0) = � � 
 � � (55)

It should be emphasized that these speeds of convergence are approximations that are
valid only close to the steady states in question. In particular, this means that the speed
of approach of paths that contain an initial non-MRAP segment may be overstated.
Second, it is interesting to note that there is no unambiguous ranking of the speeds

of convergence from the left and right to points A and B. In other words, it is not
generally true that descending to points A or B with the aid of full prevention is faster
than ascending to points A or B with no prevention. It depends on the cost of prevention
and the relevant conditions are not implied by any of the other constraints we have
maintained.18

6. Comparative Analysis and Welfare
The main focus of the present paper is the optimal control of infectious diseases through
prevention and treatment, taking the e¢ ciency of these interventions as given. In other
words, the parameters �, � and 
 are not directly controlled. Some interventions, such as
the administration of antiretroviral drugs to non-infected individuals, can be interpreted
as a direct change in the infectiousness of the disease (see Toxvaerd, 2010 for a discus-
sion and a survey of that literature). It is thus also of interest to conduct comparative
statics analysis with respect to these parameters and to analyze their welfare and policy
implications. We shall do so in this section.
From the steady state levels listed above, the following results immediately follow:

Proposition 16. (i) In steady states with no prevention, steady state prevalence is in-
creasing in infectivity and decreasing in the rate of recovery. (ii) In steady states with
positive prevention, steady state prevalence is decreasing in infectivity and independent
of the rate of recovery.

While infectivity is always measured by �, the rate of recovery may be 
 or (
 + �),
depending on steady state treatment intensity.
These results have important and surprising policy implications. They show that in

the absence of prevention, the steady state comparative statics of disease prevalence with
respect to infectiousness and the recovery rate, are qualitatively the same as those in
the classical model. But surprisingly, when the steady state involves positive preventive

18Speci�cally, we have that �+(IA; 0; 1) > ��(IA; 0; 0) if and only if cP <
�!
�+2� . Also, �+(IB ; 1; 1) >

��(IB ; 1; 0) if and only if cP <
�(!+cT )
�+2� .
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e¤ort, the comparative statics results are reversed. This is an important observation,
because the decrease in infectiousness and the improvement in therapeutic technologies
are an important vehicle through which medical scientists and epidemiologists seek to
control epidemics. What the present results show, is that changing the basic biological
parameters through direct intervention may have unexpected consequences.
To fully draw out the welfare and policy implications, we �rst derive two further

results. First, we consider the overall welfare e¤ects of such parameter changes and then
consider the e¤ects on steady state welfare. With these results in hand, we will be able
to give a sharp characterization of the welfare tradeo¤ involved in changing the biological
and medical parameters.
Consider the overall e¤ects of parameter changes on welfare. These are captured by

changes in the optimal value function. We have the following results:

Proposition 17. (i) An increase in infectiousness � decreases overall welfare. (ii) An
increase in the rate of recovery (
 + �) increases overall welfare.

Proof: From the dynamic envelope theorem, it follows that in some steady state (I�; � �; ��; ��),
the e¤ect of a change in a parameter x is given by19

@V �(I0)

@x
=

Z 1

0

@H(I�; � �; ��)

@x
dt

Therefore we have that

@V �(I0)

@�
=

Z 1

0

��I�(1� I�)(1� ��)dt < 0

@V �(I0)

@�
= �

Z 1

0

��I�� �dt � 0

@V �(I0)

@

= �

Z 1

0

��I�dt > 0

and the result follows �
It should be noted that the results with respect to � are strict only when the treatment

level is positive (and weak if the treatment level is zero).
The comparative dynamics results with respect to � ; 
; � are hardly surprising. They

also follow from a simple revealed preferences argument, as noted in Toxvaerd (2010).
Consider a decrease in � or an increase in either � or 
. Ceteris paribus, infection is now
easier to control and the planner can always choose the same paths for disease prevalence
and the policy instruments as before the change in parameters. Thus overall welfare
cannot be lower after the decrease in infectiousness or the increase in the rate of recovery.
It turns out that the gains in overall welfare may have an unexpected source, de-

pending on the steady state in question. To see this, we �rst determine the e¤ects of
parameter changes on steady state welfare. We �nd the following results:

Proposition 18. (i) In steady states with no prevention, steady state welfare is decreas-
ing in infectivity and increasing in the rate of recovery. (ii) In steady states with positive

19In this result, the Hamiltonian is �rst di¤erentiated with respect to the parameter and only then is
the resulting expression evaluated at the relevant steady state values. See Caputo (2005) for details.
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prevention, steady state welfare is increasing in infectivity if �+ � > 
 and increasing in
the rate of recovery.20

Proof: The steady state levels of welfare associated with the non-interior steady states
are given as follows:

H(IA; �A; �A; �A) =
�cP (� � 
 + �)

�
(56)

H(IB; �B; �B; �B) =
�cP (� � 
 + �� �)

�
(57)

H(IA0 ; �A0 ; �A0 ; �A0) =
�
!
�

(58)

H(IB0 ; �B0 ; �B0 ; �B0) =
(�� � + 
)(cT + !)

�
(59)

The results then follow from inspection �
Again, note that the results with respect to � are strict only when the treatment level

is positive (and weak if the treatment level is zero).
Taken together, these above results have interesting implications. Start from a situa-

tion in which the system is in steady state and consider an decrease in infectiousness �.
Assume furthermore that this change does not cause a shift in regime, so that the set of
equilibria and their optimality remains unchanged.
In steady states without prevention, i.e. (A0; B0), a decrease in � causes both overall

welfare and steady state welfare to increase. On the other hand, the new steady state
level of disease prevalence is lower, so the planner may have to expend resources on
forcing down prevalence through additional treatment, until steady state is reached.21

Since overall welfare is higher, the extra costs borne during the transition are outweighed
by the increase in the resulting steady state welfare (both suitably discounted).
In steady states with positive prevention, i.e. (A;B), a decrease in � must also

increase overall welfare, as we have seen. But we also know that such a decrease in
infectiousness actually decreases steady state welfare. The upshot of this is that all
gains in overall welfare stem from the transition to the new steady state. Indeed, since
decreasing � increases steady state prevalence when prevention is positive, the planner
forces prevalence up by reducing the level of preventive e¤ort. The cost savings associated
with not having any prevention during the transition to the new steady state are so large,
that they outweigh the losses in steady state welfare (both suitably discounted).
To sum up, decreasing infectiousness must always improve overall welfare. But in

order to reap the bene�ts of lower infectiousness, the planner must pay special attention to
the steady state the system is in. In some steady states, the optimal policy response is to
reduce prevalence through increased treatment, trading a short term increase in infection

20This condition ensures the stated result (on the e¤ects of changes in infectiousness) for steady state
B. The weaker condition � > 
 ensures that the result holds for steady state A. We also note that the
conditions that ensure that steady state welfare in steady states A and B is increasing in infectivity �
are su¢ cient conditions for the shadow values of infection being negative in steady states A0 and B0
respectively.
21This is the case if starting at point B0. If starting at point A0, the decrease will happen without

further costly infection control.
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control costs for a long term increase in steady state welfare. In other steady states,
the optimal policy response is conversely to increase prevalence through a reduction in
prevention, trading short term cost savings from reduced infection control for a long term
decrease in steady state welfare.
Turning to changes in the e¢ ciency of treatment �, some interesting patterns emerge.

While changing the infectiousness parameter � could have opposing e¤ects on overall
welfare and steady state welfare, changes in � never move these two welfare measures
in opposite directions. In steady states (A;A0), there is no treatment and thus both
overall welfare and steady state welfare are in fact independent of �. There are therefore
no tradeo¤s to consider. In steady states (B;B0), there is full treatment and therefore
overall welfare and steady state welfare are (increasing) functions of �. In this case, there
is no tradeo¤ between the short term costs and steady state welfare since the new steady
states (if di¤erent) are reached without any changes in the steady state levels of the policy
instruments.
To sum up, whether steady state prevalence changes as the e¢ ciency of treatment � is

varied, depends on whether there is any prevention in steady state. In contrast, whether
such a change in e¢ ciency has any impact on welfare (overall or in steady state), depends
on whether there is any treatment in steady state.
The results show that the key ingredient in creating rational disinhibition (as discussed

in Toxvaerd, 2010 and Gersovitz, 2010) is prevention rather than treatment, as it is the
former that gives rise to the non-classical comparative statics results.
For completeness, we would also like to comment on a seemingly counter intuitive

feature of steady states with positive preventive e¤ort. Whereas the steady state welfare
levels in points (A0; B0); in which there is no prevention, are functions of all the relevant
deep parameters, the corresponding values for points (A;B) are not. In particular, steady
state welfare in point A is independent of the health premium ! whereas in point B, it is
independent of both the health premium ! and the treatment cost cT .22 The reason for
this feature is that the optimal prevention level in these steady states are such that they
exactly counterweight these parameters. In other words, the parameters are present in the
optimal prevention levels, which in turn cancels out these parameters in the expressions
for steady state disease prevalence.

7. Simulated Paths and Steady States

In order to further illustrate the results of the preceding sections, we now consider some
sample simulations of optimal paths and steady states. The simulations were done using
a fourth-order Runge-Kutta procedure with the following parameter values:

Parameters � � 
 ! � cP cT
Values f0:2; 0:4; 0:5g 3 0:1 1 0:11 0:5 10

With this choice of the parameters (�; 
; !; �; cP ; cT ), the feasible steady states are
(A;B;C) and the system is either in Regime II or III, depending on the magnitude of the
e¢ ciency of treatment �. This means that both the low and the high infection steady

22That point A is independent of cT is not surprising since this steady state involves no treatment.
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states exist. The following table shows the ranges for � where each regime obtains:

Interval � 2 [0; 0:3] � 2 [0:3; 0:41] � 2 [0:41; 1]
Opt. steady state Point A (Reg. II) Point A or B (Reg. III) Point B (Reg. II)

In Example 1, � = 0:2 and it is optimal to pursue the path to steady state A for any
initial level of disease prevalence (this case is in Regime II). The paths to the two steady
states A and B are illustrated in the upper part of Figure 4. In the lower part, we show
the total discounted value of following the paths to steady states A and B respectively,
for di¤erent initial prevalence levels. It is clear from this �gure that the value of going
to (and staying at) point A is everywhere higher than the value of going to (and staying
at) point B.
In Example 2, � = 0:5 and it is optimal to follow the path to steady state B for any

initial prevalence level (this case is also in Regime II). The paths to A and B are shown
in Figure 5, which also shows the corresponding values of following the di¤erent paths.
It is clear from the �gure that going to (and staying at) point B always dominates going
to (and staying at) point A.
In Example 3, � = 4 and the system is in Regime III in which the optimal steady

state depends on the initial level of infection. This case is illustrated in Figure 6. For
prevalence levels below IS = 0:1629, the optimal path leads to the low infection steady
state B while for prevalence levels above IS = 0:1629, the optimal path leads to the
high infection steady state A. Thus for this parameter constellation, the optimal path is
history dependent in the sense that the initial conditions matter for where it is optimal
for the system to settle. Note that in the lower part of Figure 6, IS = 0:1629 is the
prevalence level at which the value functions for the paths to A and B intersect.
For completeness, note that the kinks in the optimal paths in the three graphs cor-

respond to switches in the control regimes. The optimal policies corresponding to the
paths in the three examples are summarized in the following table.

Example 1 (� = 0:2) Example 2 (� = 0:5)
Optimal path goes to A �(t) �(t) Optimal path goes to B �(t) �(t)
I 2 [0; 0:0031] 1 0 I 2 [0; 0:0018] 1 0
I 2 [0:0031; 0:0370] 0 0 I = 0:0018 1 0:7996
I = 0:0370 0 0:9654 I 2 [0:0018; 0:0176] 1 1
I 2 [0:0370; 1] 0 1 I 2 [0:0176; 1] 0 1

Example 3 (� = 0:4) Example 3 (� = 0:4)
Optimal path goes to B �(t) �(t) Optimal path goes to A �(t) �(t)
I 2 [0; 0:0017] 1 0 I 2 [0:0163; 0:0370] 0 0
I = 0:0017 1 0:7996 I = 0:0370 0 0:9654
I 2 [0:0017; 0:0115] 1 1 I 2 [0:0370; 1] 0 1
I 2 [0:0115; 0:0163] 0 1

It is interesting to note that when there is a globally optimal steady state, i.e. when
the system is in Regime II, the path to the optimal steady state does not form part of a
spiral, whereas the path to the sub-optimal steady state does.
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In the Skiba case, i.e. in Regime III, the paths to both steady states form part of
spirals emanating from the interior steady state.
For all three simulated cases, it is interesting to consider the corresponding optimal

paths in terms of prevention and treatment levels. With reference to the discussions
in earlier sections, a number of interesting patterns emerge. First, optimal treatment
is decreasing in prevalence along optimal paths, while optimal prevention is increasing.
Second, for extreme prevalence levels, the optimal treatment levels slow down the system�s
approach to the optimal steady state. Thus in general, it is not the case that optimal
paths are of the most rapid approach variety. Third, paths approaching high prevalence
steady states from below do so as rapidly as possible (if close enough to the steady state),
while never when approaching steady state from above. Similarly, paths approaching low
prevalence steady states from above do so as rapidly as possible (if close enough to the
steady state) while never when approaching from below. This holds true in both Regimes
II and III.
The previous exercise is a simple example of the kind of bifurcation analysis known

from the shallow lake literature (see references in Section 1.1). In the basic shallow lake
system, there are only two central parameters to vary (apart from the discount rate). In
contrast, in the present model there is a much larger number of parameters to be chosen,
making a systematic bifurcation analysis considerably harder to accomplish. Last, while
the present model leads to bang-bang policies, the shallow lake system has policies that
are continuous. This makes the present model more di¢ cult to characterize.

8. Robustness and Extensions
The present model incorporates a number of implicit simplifying assumptions. In this
section, we brie�y touch on some of these and indicate when our results can be expected
to carry over when these assumptions are relaxed. Indeed, some of these extensions seem
to us to be good starting points for further exploration.

1. We have assumed that both the incubation period and the latency period have
zero length. Furthermore, there is no uncertainty about individuals�health status.
This means that individuals in each category, i.e. infected and susceptible, can
be perfectly targeted for treatment and prevention respectively. Relaxing these
assumptions seems worthwhile but not straightforward.

2. One simplifying assumption is that the model has no demographics, i.e. births and
deaths. Adding these features do not seem to alter the analysis qualitatively. In the
simple case in which infected individuals may die at some exogenous rate, but are
immediately replaced by susceptible individuals in order to maintain stationarity,
the formal model is identical to the one studied here, but with increased recovery
rate. This is because death in this case corresponds to immediate recovery. From
a welfare perspective, introducing deaths from infection decreases the losses due to
infection, making intervention less valuable. Adding births to the model should not
change our analysis qualitatively. This is because the presence of future genera-
tions (whose welfare features in the planner�s objective) would simply increase the
bene�ts of both prevention and treatment, as these interventions not only protect
current generations from infection, but also bene�t future generations.
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Figure 4: Optimal path and steady state with � = 0:2. Path goes to steady state A.
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Figure 5: Optimal path and steady state with � = 0:5. Path goes to steady state B.
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Figure 6: Optimal path and steady states with � = 0:4. Path goes to steady state A for
I(t) > 0:1629 and to steady state B for I(t) < 0:1629.
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3. The vast majority of diseases fall under the broad category of susceptible-infected-
recovered-susceptible models (or SIRS for short). The present analysis is conducted
within the simpler SIS framework, but extends in a straightforward manner to the
SIRS setting. The SIRS model is only quantitatively di¤erent from the SIS model
that we consider, in that the bene�ts from recovery (both direct and indirect) are
higher since temporary immunity is socially bene�cial.

4. For simplicity, the population under consideration is assumed to be homogeneous in
all respects. Heterogeneity can be modeled in a number of ways, with individuals
di¤ering in either the economic or the biological parameters. Heterogeneity will
induce priority classes into the planner�s problem, such that some individuals are
treated or protected before others. But the basic forces at work are essentially
those identi�ed in our simpli�ed setup. Heterogeneity can arise endogenously in
the model because of features of the disease and the interventions. For example,
if prevention provides some measure of protection over time (but not forever, as
in vaccination), then there will at any given point of time be di¤erent kinds of
non-infected individuals in the population. This corresponds to some version of the
SIRS model discussed above. Similarly, if recovery confers partial immunity over a
period of time, then this would also correspond to a version of the SIRS model.23

5. While our model covers a wide variety of infectious diseases, we have ruled out the
possibility of immunity, acquired either through treatment, vaccination or sponta-
neous recovery. While such extensions are outside the scope of the present analysis,
they are certainly worth pursuing. One complication with these extensions is that
the number of state variables increases (which is well known from the analysis of
SIR type models) and that such models do not have closed form solutions.

6. Due to the bang-bang nature of optimal policies, it may be conjectured that linearity
of costs (in the number of individuals targeted for intervention) plays a central role
in the analysis. This turns out not to be the case. As shown by Goldman and
Lightwood (2002), when the SIS model is controlled through treatment, the positive
destabilizing feedback present in our model remains in settings with convex costs.
Since preventive e¤ort is interior even with linear costs, clearly this result will be
present with convex costs too. So linearity does not play an essential role, but does
allow us to derive a number of properties of the model explicitly.

7. We would like to note an apparent contradiction in the literature, which relates
to the monotonicity of optimal treatment policies. Using a dynamic programming
approach, Sanders (1971) �nds that optimal treatment intensity in an SIS environ-
ment is decreasing in disease prevalence. Speci�cally, he �nds that for low levels
of disease prevalence, it is optimal to treat all infected individuals while for high
levels of disease prevalence, it is optimal to not treat anyone. Sethi (1974) revisits
the Sanders analysis by using optimal control theory and focuses on the possibility
of a singular solution, something not considered by Sanders (1971). Surprisingly,
Sethi (1974) �nds that for disease prevalence above the singular steady state, it is

23In the special case where recovery confers a permanently lower level of susceptibility to reinfection,
the model reduces to a heterogeneous version of the SIS model.



Optimal Control of Infectious Diseases 31

optimal to treat everyone while for levels below it, it is optimal to not treat anyone.
Goldman and Lightwood (2002) set out to generalize Sanders�result to non-linear
cost structures but overlook the fact that their results are seemingly at odds with
Sethi�s �ndings.24 Anderson et al. (2010) explicitly note the contradicting results
but do not seeks to reconcile them. It turns out that the analysis in Goldman and
Lightwood (2002) is not directly comparable to that of Sanders (1971) or Sethi
(1974) since it relies on a subtly di¤erent model. All three contributions make sim-
ilar assumptions about the bene�ts of treatment. Namely, they all assume that the
social bene�t of treatment is a decreasing function of prevalence, because treatment
has fewer positive externalities when a large fraction of the population is already
infected. However, they make di¤erent assumptions about costs. In Sanders (1971)
and Sethi (1974), it is tacitly assumed that individual treatment cost is a sharply
decreasing function of prevalence.25 At high levels of prevalence, this cost is so
low that full treatment is optimal, despite its limited social bene�ts. Goldman and
Lightwood (2002) consider a variety of cost functions. In every case, at high levels of
prevalence, the cost of treatment exceeds its bene�ts, so the optimal policy is to set
treatment at zero. To sum up, our analysis formally con�rms the monotonicity re-
sult in Goldman and Lightwood (2002), which is in turn an important independent
result, rather than a generalization of earlier �ndings.

8. We have worked under the assumption that the population mixes homogeneously
and we have done so for tractability. While we are believe that our results would
reappear in some form or other in a wide variety of settings, we do not wish to make
blanket statements about extensions in this direction. A possible extension that we
�nd very appealing, is to consider optimal control via prevention and treatment on
an explicit network.

9. In conducting our analysis, we have taken the perspective of a benevolent social
planner that can dictate policies and does not have to consider the incentives of the
individuals in the population. This raises the important question of the possible
decentralization of optimal policy. This is an important, but not straightforward,
extension of our analysis. One direction is to consider a representative agent, as in
Goldman and Lightwood (2002) or Gersovitz and Hammer (2004). Alternatively,
one may consider fully decentralized decision making by strategically sophisticated
individuals and characterize the equilibrium outcomes in such a setting, as done
in Toxvaerd (2009a) and Toxvaerd (2010) for the models with only prevention and
only treatment, respectively. A full analysis of decentralized decision making seems
to be a very di¢ cult task to achieve. This is because the presence of treatment
introduces an element of strategic complementarities, which may in turn create
multiple (expectations-driven) equilibria (see Toxvaerd 2009a).

24In reviewing the work of Sanders (1971) and Sethi (1974), they state that �In those works, there is
some critical rate of infection below which it is optimal to treat fully and above which treatment is set
to zero.�
25Sanders (1971) and Sethi (2004) assume that the total cost of treatment is independent of disease

prevalence. Using Sethi�s notation, let x be the total size of the infected population. In his model, it
costs K
 to cure 
x individuals where K > 0 is some constant and 
 belongs to some bounded interval
of the positive real line. This works out at K=x for each individual who is cured.
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10. The way we have modeled treatment and prevention, masks an implicit asymmetry
in the e¤ectiveness with which the two instruments reduce infection. While full
prevention reduces incidence to zero instantaneously, full treatment only gradually
reduces prevalence (as long as � is �nite). In other words, while the rate of tran-
sition from infected to susceptible can be brought down only to a �nite speed, the
transition rate from susceptible to infected can be brought instantaneously to zero.
It turns out that this asymmetry has only quantitative e¤ects. We show this for-
mally in Appendix H, where we describe the dynamics and derive the steady states
of the model with imperfect prevention.

11. We have modeled preventive measures as e¤orts directed at the susceptible popula-
tion. This type of intervention can be thought of as the use of condoms, in the case
of sexually transmitted diseases. For other diseases, an alternative way to prevent
the transmission of infection is to directly target the infected individuals. One in-
stance of such a measure is a quarantine that cuts o¤ infected individuals from the
general population. In a sense, the way we have modeled prevention is tantamount
to a quarantine of the susceptible individuals. The alternative scenario in which it
is the infected that are quarantined is important and deserves further study. We
outline such a model in Appendix I and note that the dynamics of such a model
may di¤er from the present one in substantive ways.

12. We have focused attention on the in�nite horizon case, in which the problem to
be solved is stationary and autonomous. In Appendix A, we touch upon the �nite
horizon version of the model in which time runs until some terminal time T < 1.
As we discuss in the appendix, as long as the horizon is su¢ ciently distant, the
qualitative analysis is unchanged. However, a critical time is eventually reached,
after which the optimal paths in the �nite and in�nite horizon versions di¤er. The
main qualitative di¤erence is that in the �nite horizon version, optimal paths or
policies may fail to be monotone in time.

9. Conclusion
For the past four decades, the �eld of infectious disease control and public health has
bene�ted from formal mathematical analyses of epidemics and their management through
di¤erent policies that in�uence disease propagation. By employing techniques from dy-
namic optimization, economists have added valuable insights on how best to control
infectious diseases and thereby informed public policy in this important �eld.
Although signi�cant progress has been made in the analysis of single instrument mod-

els, such as those with vaccination, quarantines, condom use, mosquito nets or treatment,
little is known about optimal disease control through multiple interacting instruments.
One important question, from both a theoretical and a practical policy perspective, is
to determine how di¤erent instruments and policies interact and how such interventions
should be combined at di¤erent stages of the epidemic. Answering this type of question
is the central aim of this paper.
Our analysis is not simply an abstract exercise, but one that has concrete, practical

relevance to the formulation of policy. A case in point is the recent outbreak of swine �u.
In early July 2009, the UK Department of Health announced that in its battle against the
swine �u pandemic, it had now entered a �treatment phase�under which treatment was
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to be the main policy instrument in controlling the outbreak of the disease.26 It stated
that

�As swine �u spreads and more people start to catch it, it makes sense to
move from intensive e¤orts to contain the virus to focusing e¤orts on treating
the increasing number of people who have the disease.�

While the exact reasoning behind this change of tack was not made explicit, it�s clear
from this statement that the relative desirability of treatment and prevention was thought
by policy makers to be a function of disease incidence and prevalence.27 To the best of our
knowledge, there is no existing research that formally shows that such a policy switch may
be optimal or that formally links the optimal policy mix to the level of disease prevalence
or incidence.
In this paper, we have analyzed the optimal economic control of a susceptible-infected-

susceptible model, in which a benevolent social planner can in�uence the rates of infection
and recovery through costly intervention. Although this is a di¢ cult problem, we have
made signi�cant progress in characterizing both the steady states of the system and the
equilibrium paths. While out characterization is wholly analytical, we have added sample
simulations of the system in order illustrate the dynamics and the optimal policies.
A number of results emerge from this analysis. First, treatment and prevention work

in fundamentally di¤erent ways. Although both reduce infection, the former directly tar-
gets prevalence whereas the latter directly targets incidence. More importantly, we �nd
that treatment induces a destabilizing positive feedback e¤ect, since the marginal bene�ts
of treatment are decreasing in disease prevalence. Since treatment reduces prevalence,
the desirability of further treatment is increased as treatment e¤orts are intensi�ed. This
complementarity between current and future treatment e¤orts creates the potential for
multiple steady states. In contrast, prevention induces a stabilizing negative feedback
e¤ect, since the marginal bene�t of prevention is increasing in disease prevalence. This
means that as preventive measures are intensi�ed, prevalence levels decrease, thereby
making further prevention less desirable. When these e¤ects are superimposed, interest-
ing interactions occur. This is evident in a number of di¤erent instances. For example,
we �nd that the optimal policy will typically involve treatment when prevalence is low
but no treatment when prevalence is high. Since prevention and treatment are imper-
fect substitutes, if there is any prevention at all, a low infection, high treatment steady
state will be associated with relatively little prevention. Similarly, a high infection, low
treatment steady state will involve a relatively high level of prevention.
We �nd that conducting comparative statics analysis is at best a very delicate matter.

In steady states with no prevention, the comparative statics of steady state prevalence
with respect to infection and recovery rates mirror those of the classical epidemiological
SIS model. Namely, steady state prevalence is increasing in infectivity and decreasing in

26See Swine Flu: From Containment to Treatment, UK Department of Health (2009).
27In a news release by the Scottish Government, Health Secretary Nicola Sturgeon is reported to have

stated that �In recent weeks we have, as expected, seen a signi�cant increase in the number of cases
of pandemic �u throughout the UK [...]. Given the number of cases, and the evidence of community
transmission, we believe now is the right time to move to the treatment phase of dealing with the
pandemic [...]. This does not mean that the virus is getting more severe or that there is any cause for
alarm. It simply means that we are seeing a rise in the number of cases and are adapting our approach
to dealing with these.�See http://www.scotland.gov.uk/News/Releases/2009/07/02125359.
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the e¤ective rate of recovery. In steady states with positive preventive e¤ort, these results
are partially reversed. In particular, higher infectivity yields lower steady state disease
prevalence (because of lower prevention levels) while prevalence is wholly independent of
the rate of recovery. These results highlight the importance of careful formal analysis
in conducting policy aimed at reducing infectivity or at increasing the e¤ectiveness of
treatment.

An interesting and worthwhile extension of the present work that we have not yet
pursued, is to conduct a careful bifurcation analysis. While such analysis has been carried
out for the related shallow lake systems, as described in connection with the equilibrium
dynamics of the model, a number of di¤erent regimes are possible for di¤erent parameter
constellations. It would be interesting to carry out a systematic analysis of these regimes,
in order to get a clearer picture of when the system is in Regime I, II or III respectively (in
which there is either a unique steady state, multiple steady states with a unique optimal
one, or multiple steady states in which the optimal one depends on initial conditions).
Such an analysis would likely entail a signi�cant amount of simulations, but should be
worth pursuing in order to conduct policy experiments.

We should emphasize that when treatment or prevention e¤orts are found to be zero
in steady state, the model does not reduce to the special case models in which no treat-
ment or prevention is possible. This is because it may be optimal to treat and/or prevent
infection along the equilibrium paths even if it ceases to be optimal once steady state
is reached. Thus the dynamics of the present model in those cases di¤er from the cor-
responding dynamics of the single-instrument models. Furthermore, for some parameter
constellations, steady states from the treatment only model and the prevention only
model coexist.

The modeling assumptions that we have adopted, in particular linearity of costs in
the measure of targeted individuals, pose some di¢ culties but a¤ord us some advantages
as well. The simplicity of the optimal solutions makes a characterization of the optimal
paths and steady states very clear. In particular, we get closed form solutions for multiple
steady states, which allows us to give a sharp characterization and comparative analysis
with respect to parameters. On the other hand, the concavity of the disease propagation
function, and the resulting convexity of the Hamiltonian, together with the bang-bang
nature of the optimal controls, makes it impossible to use many of the standard results
in optimal control theory. Speci�cally, su¢ ciency conditions for local extrema, such as
that of Arrow, as well as conditions for local stability, are inapplicable.28 Despite this,
we make very substantial progress in completely characterizing the behavior and optimal
control of the system analytically. We achieve this by using both novel approaches and by
using techniques recently developed to study the optimal management of other ecological
systems.

28There are very few general results on linear control problems. See Caputo (2005) for a discussion.
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A. Existence of an Optimal Solution

In this appendix, we prove that the planner�s problem admits an optimal solution. The
existence proof proceeds in two steps. In Step 1, we consider �nite horizon versions
of the model and show that in these, an optimal solution exists. In Step 2, we show
by contradiction that because optimal solutions exists for all �nite horizons, an optimal
solution must also exist for the in�nite horizon version.
Step 1: Consider a �nite horizon version of the model in which t 2 [0; T ], with T <1.
De�ne the set

N(I; U; t) �
�
e��t (�!I � cP (1� I)� � cT I�) + �; I (�(1� I)(1� �)� 
 � ��) : (� ; �) 2 U

	
(60)

where � � 0 is some constant and U = [0; 1]� [0; 1] is the space of feasible control pairs.
Consider two points y1; y2 2 N(I; U; t) given by

y1 �
�
e��t (�!I � cP (1� I)�1 � cT I� 1) + �1; I (�(1� I)(1� �1)� 
 � �� 1)

	
(61)

y2 �
�
e��t (�!I � cP (1� I)�2 � cT I� 2) + �2; I (�(1� I)(1� �2)� 
 � �� 2)

	
(62)

Let ' 2 [0; 1] and let y3 � 'y1 + (1� ')y2. We will prove that y3 2 N(I; U; t) and thus
that the set N(I; U; t) is convex. Let 'y1+(1�')y2 = (z1; z2). Taking the �rst element,
we have that

z1 = '
�
e��t (�!I � cP (1� I)�1 � cT I� 1) + �1

�
+(1� ')

�
e��t (�!I � cP (1� I)�2 � cT I� 2) + �2

�
(63)

= e��t (�!I � cP (1� I)�3 � cT I� 3) + �3 (64)

where � 3 � '� 1 + (1� ')� 2, �3 � '�� 1 + (1� ')�2 and �3 � '�1 + (1� ')�2 � 0.
Similarly, taking the second element we have that

z2 = ' [I (�(1� I)(1� �1)� 
 � �� 1)]
+(1� ') [I (�(1� I)(1� �2)� 
 � �� 2)] (65)

= I [�(1� I)(1� �3)� 
 � �� 3] (66)

We can now conclude that: (i) there exist an admissible triple (I(t); �(t); �(t)); (ii)
the set N(I; U; t) is convex for each (I(t); t); (iii) the set U is closed and bounded; (iv)
there exists a bound b = 1 such that kI(t)k < b for all t � 0 and admissible triples
(I(t); �(t); �(t)). By the Filippov-Cesari Theorem, we can then conclude that an optimal
solution (I�(t); � �(t); ��(t)) exists and the optimal policy (� �(t); ��(t)) is measurable. See
Seierstad and Sydsaeter (1987) for details.
Step 2: We will consider the case in which the relevant steady states are (A;B). The
case (A0; B0) follows similar steps. In the �nite horizon version of our problem, we impose
no condition on the terminal value I(T ). This implies that the relevant transversality
condition is �(T ) = 0. As we have shown, this problem has an optimal solution. More-
over, if T is large enough, there are at at most two candidates for an optimum. Each path
satis�es the necessary conditions for optimality, including the aforementioned transver-
sality condition. Of these two candidate optimal paths, one goes to solution A as in the
in�nite horizon case but then at time t = T � TA , peels o¤ along the unstable branch to
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Figure 7: Paths in �nite horizon model around point A.
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increase monotonically, reaching �(t) = 0 at time t = T . The other path goes to solution
B as in the in�nite horizon case, but then at time t = T �TB, peels o¤ along the unstable
branch to increase monotonically, reaching �(t) = 0 at time t = T . Note that the times
TA and TB are �xed.
In Figure 7, we illustrate the idea by plotting optimal paths around the point A. The

parameters are the same as those in Example 1. The optimal paths from initial condition
I0 = 0:5 and di¤erent horizons T are represented by dashed curves. Note that the light
paths reach the �(T ) = 0 line faster than the heavy dashed path that goes through point
A, since the latter stays at point A until time t = T � TA regardless of how long it took
that path to reach point A. In contrast, the light dashed paths do not rest at any point
until they reach their destination. For all horizons T � 46:3, the optimal path reaches
point A before making the transition to the �(T ) = 0 line, while for horizons T < 46:3,
the point A is not reached along an optimal path. While we have shown only a case
where I0 > IA, similar analysis applies for the case I0 < IA. Similar analysis also applies
for optimal �nite horizon paths in the vicinity of the other steady states.
From the point A, there is a unique path satisfying the Hamiltonian conditions and

starting from (I(0); �(0)) = (IA; �A) and is such that �(TA) = 0 for some TA > 0. The
time TA is unique. Denote the value of the integral along this path as follows:

WA �
Z TA

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (67)

From the point B, there is similarly a unique path satisfying the Hamiltonian conditions
and starting from (I(0); �(0)) = (IB; �B) and is such that �(TB) = 0 for some TB > 0.
The time TB is unique. Denote the value of the integral along this path as follows:

WB �
Z TB

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (68)

From now on, we shall consider only paths that begin at I(0) = I0. Let

V TA �
Z T

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (69)

where the integral is evaluated along the Hamiltonian path and terminates at point A at
time T . Also, let

V TB �
Z T

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (70)

where the integral is evaluated along the Hamiltonian path and terminates at point B at
time T .
Finally, let

XT
A �

Z T

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (71)

where the integral is evaluated along the Hamiltonian path that goes to point A and sits
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there until time t = T � TA and then peels o¤ to reach �(t) = 0 at time t = T . Also, let

XT
B �

Z T

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (72)

where the integral is evaluated along the Hamiltonian path that goes to point B and sits

there until time t = T � TB and then peels o¤ to reach �(t) = 0 at time t = T .
It is clear that

XT
A = V T�TAA + e��(T�TA)WA (73)

XT
B = V T�TBB + e��(T�TB)WB (74)

Suppose without loss of generality that in the in�nite horizon case, it is better to go
to point B and stay there than to go to point A and stay there. Then

lim
T!1

V T�TBB = V 1B > V 1A = lim
T!1

V T�TAA (75)

From the above equations, it then follows that

lim
T!1

XT
B > lim

T!1
XT
A (76)

Thus, in the �nite horizon case, it is optimal for large T to go to point B and then peel
o¤ at time t = T � TB.
Suppose there is no optimal path in the in�nite horizon case. Then there is some path

starting from I(0) = I0 for which the value of the integral is greater than V 1B . Let

ZT �
Z T

0

e��t [I(t) [!I � cT �(t)] + (1� I(t)) [!S � cP�(t)]] dt (77)

where the integral is evaluated along this alternative path.

By assumption,
lim
T!1

ZT = Z1 > V 1B = lim
T!1

V TB (78)

This implies that there exist T
�
; T �; " > 0 such that for all T > T

�
and T > T �, the

inequality ZT > V TB + " holds. Hence, for T > max
n
T
�
+ TB; T

�
o
, it follows that

ZT > V T�TBB + " (79)

Now, for su¢ ciently large T , " > e��(T�TB)WB and hence

ZT > V T�TBB + e��(T�TB)WB = X
T
B (80)

But this is not possible, since XT
B is optimal. This contradiction establishes that there

must be an optimal solution to the in�nite horizon problem. This concludes the proof �
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B. Parameter Restrictions for Steady States
Throughout this paper, we have maintained the assumption that !� cP > 0 and �� 
�
� > 0. In this appendix, we list additional assumptions that ensure that the di¤erent
�xed points are feasible.

B.1. Fixed Point A. For this steady state to be feasible, we need the following
additional restrictions:

� For I(t) 2 (0; 1) need cP < �!
�+�
.

� For �(t) < 0 need cP < !.

� For �(t) 2 (0; 1) need cP < !.

� For �(t) = 0 need cP > ! � cT
�
�
�

�
.

B.2. Fixed Point B. For this steady state to be feasible, we need the following
additional restrictions:

� For I(t) 2 (0; 1) need cP < �(!+cT )
�+�

.

� For �(t) < 0 need cP < ! + cT .

� For �(t) 2 (0; 1) need cP <
�

����

����
+�

�
(! + cT ).

� For �(t) = 1 need cP < ! + cT
�
���
�

�
.

B.3. Fixed Point C. For this steady state to be feasible, we need the following
additional restrictions:

� For I(t) 2 (0; 1) need cP < �cT
�
.

� For �(t) < 0, no extra restriction.

� For �(t) 2 (0; 1) need cP < min
�
!
2
+ cT

�
��
��
2�

�
; �cT
�

	
.

� For �(t) 2 (0; 1) need cP 2 (! � cT
�
�
�

�
; ! + cT

�
���
�

�
).

B.4. Fixed Point A0. For this steady state to be feasible, we need the following
additional restrictions:

� For I(t) 2 (0; 1) need � > 
.

� For �(t) < 0 need � > 
 � �.

� For �(t) = 0 need cP > !(��
)
��
+� .

� For �(t) = 0 need cT > �!
��
+� .
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B.5. Fixed Point B0. For this steady state to be feasible, we need the following
additional restrictions:

� For I(t) 2 (0; 1); no extra restriction.

� For �(t) < 0, no extra restriction.

� For �(t) = 0 need cP > (!+cT )(��
��)
��
+��� .

� For �(t) = 1 need cT < �!
��
+��2� .

B.6. Fixed Point C0. For this steady state to be feasible, we need the following
additional restrictions:

� For I(t) 2 (0; 1), need cT 2 ( �!
�+
+�

; �!

+��� ).

� For �(t) < 0; no extra restriction.

� For �(t) = 0 need cP > �!+cT (��
��)
2�

.

� For �(t) 2 (0; 1) need cT 2 ( �!
��
+� ;

�!
��
+��2�).

C. Non-Optimality of Maximal Prevention
In this appendix, we prove that an optimal path cannot end at a point at which prevention
is at its maximum possible level. We prove this result by contradiction. Suppose that
�� = 1. Consider a trajectory for which there exists t̂ such that (�(t); �(t)) = (� ; 1) for all
t � t̂, where � 2 [0; 1] is a �xed level of treatment. Such a policy will eradicate the disease
asymptotically, i.e. will be such that limt!1 I(t) = 0. Assume this trajectory is optimal.
There are two cases to consider. First, suppose that � < 1. Since the policy is optimal, it
must be the case that �(t) � �cT=� for t � t̂. Hence, ��(t)I(t) � ��I(t)cT=� for t � t̂:
Since limt!1 I(t) = 0 it follows that limt!1 ��(t)I(t) � 0. This implies the existence of
~t such that ��(t)I(t) > �cP for t � ~t. By the Hamiltonian conditions this in turn implies
that �(t) = 0 for t � ~t, contradicting the assumption that �(t) = 1 for su¢ ciently large
t:
Next, suppose that � = 1. For clarity assume that t̂ = 0. From the logistic growth

equation, it follows that along such a path, prevalence evolves according to

_I(t) = �(
 + �)I(t) (81)

Integrating this equation yields

I(t) = e�(
+�)tI0 (82)

where I0 = I(0) is the initial condition. Hence

_I(t) = �(
 + �)e�(
+�)tI0 (83)

From the law of motion of the costate variable, we have that

_�(t) = �(t) [�+ 
 + �] + [! � cP + cT ] (84)
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This di¤erential equation can be rewritten as

_z(t) = z(t) [�+ 
 + �] (85)

where
z(t) = �(t) +

! � cP + cT
�+ 
 + �

(86)

Integrating yields
z(t) = e(�+
+�)tz0 (87)

where

z0 = �0 +
! � cP + cT
�+ 
 + �

(88)

and �0 = �(0).
It follows that

�(t) = e(�+
+�)t
�
�0 +

! � cP + cT
�+ 
 + �

�
� ! � cP + cT

�+ 
 + �
(89)

and thus

e��t�(t) _I(t) = �
�
�0 +

! � cP + cT
�+ 
 + �

�
(
 + �)I0

+e�(
+�)t
�
! � cP + cT
�+ 
 + �

�
(
 + �) I0 (90)

Taking the in�nite horizon limit, gives

lim
t!1

e��t�(t) _I(t) = �
�
�0 +

! � cP + cT
�+ 
 + �

�
(
 + �)I0 (91)

Next, note that

�0 < �CT = �
�
! � cP + cT

�

�
< �

�
! � cP + cT
�+ 
 + �

�
(92)

Hence
�0 +

! � cP + cT
�+ 
 + �

< 0 (93)

and it follows that
lim
t!1

e��t�(t) _I(t) > 0 (94)

Note also that

e��tH = e��t [�! � cP�(t)(1� I(t))� cT I(t)] + e��t� _I(t) (95)

Taking limits yields

lim
t!1

e��tH = lim
t!1

e��t�(t) _I(t) > 0 (96)
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According to Michel (1982), a necessary condition for a trajectory to be optimal is
that the transversality condition limt!1 e

��tH = 0 holds: This condition is clearly not
satis�ed along any trajectory with (�(t); �(t)) = (1; 1) for all t � 0. This concludes the
proof �

D. Non-Optimality of Points C and C0
In this appendix, we formally establish the non-optimality of the interior points C and
C0. To this end, we �rst prove a useful relationship between the value function and the
Hamiltonian. This part of the proof is related to a result by Mäler et al. (2003), but
theirs applies only to fully interior controls and we must therefore make suitable changes
and exploit that controls are constant almost everywhere along optimal paths.29

Lemma 19. �V (I0) = H(I0; �(0); �(0); �(0)).

Proof: Consider a path which starts from the point I(0) = I0, for which the control vari-
ables �(t) and �(t) are piecewise continuous and which satis�es the �rst order Hamiltonian
conditions. For any path that satis�es these conditions together with the transversality
condition and the laws of motion for state and costate variables, the following are true:
(1) Suppose that

� [cT + ��(t)] I(t) < 0 (97)

Then �(t) = 0 is optimal. Since �(t) and I(t) are continuous along the path in question,
it follows that

� [cT + ��(t+ ")] I(t+ ") < 0 (98)

for su¢ ciently small " > 0 and hence �(t+") = 0. Thus, d�(t)=dt = 0 at time t. Likewise,
d�(t)=dt = 0 if

� [cT + ��(t)] I(t) > 0 (99)

which makes �(t) = 1 optimal. Finally, if

[cT + ��(t)] I(t) = 0 (100)

then the Hamiltonian is independent of the treatment rate and therefore @H=@�(t) = 0.
Thus, it is always the case that

@H

@�(t)

d�(t)

dt
= 0 (101)

(2) Suppose
� [cP + ��(t)I(t)] (1� I(t)) < 0 (102)

Then �(t) = 0 is optimal. Since �(t) and I(t) are continuous along the path in question,
it follows that

� [cP + ��(t+ ")I(t+ ")] (1� I(t+ ")) < 0 (103)

for su¢ ciently small " and hence �(t + ") = 0. Thus, d�(t)=dt = 0 at time t. Likewise,
d�(t)=dt = 0 if

� [cP + ��(t+ ")I(t+ ")] (1� I(t+ ")) > 0 (104)

29We have an alternative proof of the non-optimality of the interior points but the present derivation
is more elegant.
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which makes �(t) = 1 optimal. Finally, if

[cP + ��(t)I(t)] (1� I(t)) = 0 (105)

then the Hamiltonian is independent of the prevention rate and therefore @H=@�(t) = 0.
Thus, it is always the case that

@H

@�(t)

d�(t)

dt
= 0 (106)

The current-value Hamiltonian H is a function of I(t); �(t); �(t) and �(t). Hence totally
di¤erentiating the Hamiltonian yields

dH

dt
=

@H

@I(t)

dI(t)

dt
+
@H

@�(t)

d�(t)

dt
+
@H

@�(t)

d�(t)

dt
+
@H

@�(t)

d�(t)

dt
(107)

=
@H

@I(t)

dI(t)

dt
+
dI(t)

dt

�
��(t)� @H

@I(t)

�
+
@H

@�(t)

d�(t)

dt
+
@H

@�(t)

d�(t)

dt
(108)

= ��(t)
dI(t)

dt
(109)

where we have used that

_I(t) =
@H

@�(t)
(110)

_�(t) = ��(t)� @H

@I(t)
(111)

Next, we have that

d(e��tH)

dt
= �e��t

�
�H + �(t)dI(t)

dt

�
(112)

= �e��t [!I(t) + cP�(t)(1� I(t)) + cT �(t)I(t)] (113)

Since the transversality condition limt!1 e
��tH(t) = 0 must hold, it follows thatZ 1

0

�
d(e��tH)

dt

�
dt = lim

t!1
e��tH(t)�H(0) = �H(0) (114)

Thus

H(x0; u(0); �(0)) = �
Z 1

0

�
d(e��tH)

dt

�
dt (115)

= ��
Z 1

0

e��t (!I(t) + cP�(t)(1� I(t)) + cT �(t)I(t)) dt (116)

= �V (I0) (117)

Hence
�V (I0) = H(I0; �(0); �(0); �(0)) (118)

This completes the proof �
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We now turn to the proof of the non-optimality of the interior solutions. Suppose
there is a path that starts at I(0) = IC and has

�(0) = ��C > �C =
�cT
�

(119)

and hence ���CIC > ��CIC = �cP . The �rst inequality implies that �(t) = 0 is optimal
and the second implies that �(t) = 0 is optimal. Equation (118) implies that value of the
integral for the stationary path that remains at IC is given by

�VC = �! � cP�C(1� IC)� cT �CIC + �CIC [(1� �C)�(1� IC)� 
 � ��C ](120)
= �! + �CIC [�(1� IC)� 
] (121)

The value of the integral along the alternative path is found by setting I(0) = IC , �(0) =
��C , �(0) = 0 and �(0) = 0. Using (118), this yields the following expression for the
integral along this path:

�V � = �! + ��CIC [�(1� IC)� 
] (122)

By subtraction,
�(V � � VC) = (��C � �C)IC [�(1� IC)� 
] (123)

Note that _I(t) = 0 if I(t) = IC ; �(t) = �C ; �(t) = �C . Hence

_I(t) = IC [(1� �C)�(1� IC)� 
 � �C�] = 0 (124)

Since IC ; �C ; �C > 0, if follows that

IC [�(1� IC)� 
] > IC [(1� �C)�(1� IC)� 
 � �C�] = 0 (125)

Since ��C > �C , it follows that V
� > VC . Thus it is better to choose the alternative path

than to remain at C. These arguments also apply to the point C0. This concludes the
proof �

E. Rotation Around Interior Solutions
In this appendix, we prove that the movement around the interior points is a clock-wise
rotation. Suppose that the interior stationary solution is C. The diagram in Figure 8
shows a linearized segment of a path in the vicinity of C and the angles �i, i = 1; :::; 5.
We shall now show that

900 > �1; �3; �4; �5 > 0 (126)

1800 > �2 > 0 (127)

900 > �1 � �5; �5 � �3; �4 � �5 > 0 (128)

1800 > �2 � �5 > 0 (129)

Let ti = tan �i. Then it follows that

ti =
_�(t)
_I(t)

(130)
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Figure 8: Rotation around interior solution C with linearized system.
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For i = 1; :::; 4, the rates of change _I(t) and _�(t) are calculated by choosing the appropriate
values of �(t) and �(t) and inserting the equilibrium values IC and �C into the laws of
motion for the state and costate variables, i.e.

_I(t) = I(t) [(1� �(t))�(1� I(t))� 
 � ��(t)] (131)

_�(t) = �(t) [�+ 
 + ��(t) + (1� �(t))�(2I(t)� 1)] + [! � �(t)cP + �(t)cT ] (132)

We now proceed to consider each angle in turn:

Angle �1: �(t) = 1; �(t) = 1: This yields the laws of motions

_I(t) = IC [�
 � �] (133)

= ��cP
�cT

(
 + �) < 0 (134)

_�(t) = �C [�+ 
 + �] + [! � cP + cT ] (135)

= �cT
�
(�+ 
) + (! � cP ) < 0 if C is allowable (136)

and hence

t1 =
_�(t)
_I(t)

(137)

=
cT
�
(�+ 
)� (! � cP )

�cP
�cT
(
 + �)

> 0 (138)

Thus, 900 > �1 > 0.

Angle �2: �(t) = 1; �(t) = 0: This yields the laws of motion

_I(t) = IC [�(1� IC)� 
 � �] (139)

=
�cP
�cT

�
�

�
1� �cP

�cT

�
� 
 � �

�
(140)

_�(t) = �C [�+ 
 + �+ �(2IC � 1)] + [! + cT ] (141)

= �cT
�
[�+ 
 � �] + [! � 2cP ] > 0 if C is allowable (142)

and hence

t2 =
_�(t)
_I(t)

(143)

=
� cT

�
[�+ 
 � �] + [! � 2cP ]

�cP
�cT

h
�
�
1� �cP

�cT

�
� 
 � �

i (144)

Since _�(t) > 0, it follows that 1800 > �2 > 0.
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Angle �3: �(t) = 0; �(t) = 0: This yields the law of motion for prevalence as

_I(t) = IC [�(1� IC)� 
] (145)

=
�cP
�cT

�
�

�
1� �cP

�cT

�
� 


�
> 0 since IC < IA0 =

� � 

�

(146)

Note that I(t) converges to ��

�
if there is no treatment or protection. Since there is

some treatment and some protection at C, it must be the case that IC <
��

�
. The law

of motion for the multiplier is given by

_�(t) = �cT
�
[�+ 
 � �] + [! � 2cP ] > 0 if C is allowable (147)

and thus it follows that

t3 =
_�(t)
_I(t)

(148)

=
� cT

�
[�+ 
 � �] + [! � 2cP ]

�cP
�cT

h
�
�
1� �cP

�cT

�
� 


i > 0 (149)

Thus, 900 > �3 > 0.

Angle �4: �(t) = 0; �(t) = 1. This yields the laws of motion

_I(t) = �
IC (150)

= �
�cP
�cT

< 0 (151)

_�(t) = �C [�+ 
] + [! � cP ] (152)

= �cT
�
[�+ 
] + [! � cP ] < 0 if C is allowable (153)

t4 =
_�(t)
_I(t)

(154)

=
cT
�
[�+ 
]� [! � cP ]


 �cP
�cT

> 0 (155)

Thus, 900 > �4 > 0.

To �nd t5, note that the curve with this slope satis�es the equation ��(t)I(t) = �cP and



48 Rowthorn and Toxvaerd

hence at C,

t5 =
d�(t)

dI(t)
(156)

=
cP

� (IC)
2 (157)

=
cP

�
�
�cP
�cT

�2 (158)

=
�

cP

�cT
�

�2
> 0 (159)

Thus, 900 > �5 > 0.

Angle �1 � �5:

J (t1 � t5) =
cT
�
(�+ 
)� (! � cP )�

�

cP

�cT
�

�2 cP�
�cT

(
 + �) (160)

=
cT
�
(�+ 
)� (! � cP )�

cT
�
(
 + �) (161)

=
cT
�
�� (! + cT � cP ) < 0 if C exists (162)

where
J � �cP

�cT
(
 + �) > 0 (163)

Thus 900 > �5 � �1 > 0.
Angle �2 � �5:

K(t2 � t5) = �cT
�
[�+ 
 � �] + [! � 2cP ]�

cT
�

�
�

�
1� cP�

�cT

�
� 
 � �

�
(164)

= �cT
�
[�� �] + [! � cP ] > �

cT
�
[�� �] + �cT

�
� cT = 0 if C exists(165)

where

K � �cP
�cT

�
�

�
1� �cP

�cT

�
� 
 � �

�
(166)

Thus, 1800 > �2 � �5 > 0.
Angle �3 � �5:

L(t3 � t5) = �cT
�
[�+ 
 � �] + [! � 2cP ]�

cT
�

�
�

�
1� cP�

�cT

�
� 


�
(167)

= �cT
�
�+ [! � cP ] < 0 if C exists (168)

where

L � �cP
�cT

�
�

�
1� �cP

�cT

�
� 


�
> 0 (169)



Optimal Control of Infectious Diseases 49

Thus, 900 > �5 � �3 > 0.
Angle �4 � �5:

t4 � t5 =
cT
�
[�+ 
]� [! � cP ]


 �cP
�cT

� �

cP

�cT
�

�2
(170)

M(t4 � t5) =
cT
�
[�+ 
]� [! � cP ]�

cT
�

 (171)

=
cT
�
�� [! � cP ] > 0 if C exists (172)

where
M � 
�cP

�cT
> 0 (173)

Thus, 900 > �4 � �5 > 0.
This establishes the inequalities we wished to show. There is therefore a clockwise rotation
around C. The diagram refers to the case in which 900 > �2. The diagram is slightly
di¤erent if 1800 > �2 > 0, but there is still a clockwise rotation around C.

Next, suppose the interior stationary solution is C0. Then in the region of this point,
there is no prevention and the local dynamics are the same as in the treatment-only model
examined by Rowthorn (2006), who showed that there is a clockwise rotation around the
interior stationary solution. This concludes the proof �

F. Points C and C0 are Spiral Sources

In this appendix, we prove that the rotations around the interior points C and C0 are nec-
essarily exploding spirals. First, consider paths (�(t); �(t)) that maximize the planner�s
problem. Then the resulting system

_I(t) = I(t) [(1� �(t))�(1� I(t))� 
 � �(t)�] (174)
_�(t) = �(t) [�+ 
 + ��(t) + �(2I(t)(1� �(t)) + �(t)� 1)]

+ [! + �(t)cT � �(t)cP ] (175)

evaluated along these paths, cannot display limit cycles. This was shown by Wagener
(2003) and his argument is as follows. In (I(t); �(t))-space, consider the vector �eld

F =

�
@H

@�(t)
; ��(t)� @H

@I(t)

�
(176)

Let �t denote the �ow mapping of the system (174)-(175). Then for some initial condi-
tions (I(0); �(0)), we have �t(I(0); �(0)) = (I(t); �(t)), where (I(t); �(t)) is a solution to
the system for the given initial conditions. Next, consider a set of initial conditions �(0).
Then �t maps this set into a new set �(t) as follows:

�(t) = f(I(t); �(t)) : (I(t); �(t)) = �t(I(0); �(0)) for some (I(0); �(0)) 2 �(0)g (177)
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Figure 9: Rotation around point C when it is a spiral sink.
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Figure 10: Rotation around point C when it is a spiral source.
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The last step is to note30 that

dArea�(t)
dt

jt=0 = �Area�(0) > 0 (178)

In other words, if we start by considering a set of initial conditions �(0) with strictly pos-
itive area, then the invariant region delineated by the system must be strictly increasing
over time. But this rules out limit cycles, as they would imply the existence of a bounded
invariant region.
Next, we consider the possibility that the interior points are sinks. Figure 9 illustrates

a segment of the trajectory around C when the point is a spiral sink. Let �(0) be the
closed set enclosed by the line M0M1M2M3M4 together with the line segment M4M0. As
can be seen from the �gure, the initial direction of movement of every point in the set
�(0) is into this set, either along the boundary or into the interior. Thus

dArea�(t)
dt

jt=0 � 0 (179)

However, we have already seen that

dArea�(t)
dt

jt=0 = �Area�(0) > 0 (180)

This contradiction establishes that the point C cannot be a spiral sink. Thus, the
point C must be a spiral source (with clock-wise rotation), as illustrated in �gure 10. A
similar argument holds for point C0. This concludes the proof �

G. Non-Optimality of Spiraling

In this appendix, we prove that it is never optimal to follow a spiral path. Suppose that
the interior �xed point C is feasible and consider two paths which satisfy the Hamiltonian
conditions and start directly above C at the points (IC ; �

�
C) and (IC ; �

��
C ). Suppose �

��
C >

��C . Initially both paths satisfy the inequalities ��(0)I(0) > �cP and �(0) > �cT=�, and
thus in each case �(0) = �(0) = 0:The integral along these paths satisfy the following
equations:

�V � = H� = �! + ��CIC [�(1� IC)� 
] (181)

�V �� = H� = �! + ���C IC [�(1� IC)� 
] (182)

Thus,
�(V �� � V �) = (���C � ��C)IC [�(1� IC)� 
] > 0 (183)

Hence, the path with the higher initial value �(t) is better. In the case of a spiral around
the point C in (I(t); �(t))-space, this means that it is best to choose the outermost
path. This has been shown for paths that begin above the point C. A similar argument
applies to paths that start below C. The rule is always choose an outermost path. These
arguments also apply to the point C0 �

30See Wagener (2003) for details.
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H. Imperfect Prevention

In this appendix, we consider the e¤ects of imperfect prevention on the steady states and
dynamics of the system. Assume that for some � > 0, the infection rate is given by

I(t) [�+ (1� �(t))�] (184)

In this formulation, given the infection level I(t), the infection rate for any level of
prevention is uniformly higher than in the standard formulation, since it can be brought
down no further than to the level �I(t). The Hamiltonian conditions are unchanged by
this imperfection, but the dynamics change to

_I(t) = I(t) [(�+ (1� �(t))�)(1� I(t))� 
 � �(t)�] (185)
_�(t) = �(t) [�+ 
 + ��(t) + �(2I(t)(1� �(t)) + �(t)� 1) + �(2I(t)� 1)]

+ [! + �(t)cT � �(t)cP ] (186)

The steady state prevalence values for points A�, B�, C�, A�0 , B
�
0 , C

�
0 are as follows:

IA� � �cP
�(! � cP )� �cP

> IA (187)

IB� � �cP
�(! � cP )� �cP + �cT

> IB (188)

IC� � �cP
�cT

= IC (189)

IA�0 � � � 
 + �
� + �

> IA0 (190)

IB�0 � � � 
 � �+ �
� + �

> IB0 (191)

IC�0 � �! + cT (� � 
 � �+ �)
2cT (� + �)

> IC0 (192)

Note that all the relevant steady state prevalence levels are higher than under perfect
prevention.31 It is clear from these results that nothing qualitative changes if prevention
becomes imperfect.

I. Quarantine versus Prevention

Consider the setting in which the planner can choose the fraction q(t) 2 [0; 1] of infected
individuals that are quarantined. Quarantine costs cQ � 0 per instant per infected indi-
vidual. Quarantine reduces the contact rates between infected and susceptible individuals
and hence disease incidence becomes

(1� q(t))�I(t)(1� I(t)) (193)

This is virtually the same as under prevention as we have modeled it so far. The main
di¤erence appears in the cost of the intervention, which depends on which class of indi-
viduals is being targeted.

31The ranking IC�
0
> IC0 holds if and only if cT >

�!

+� .
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The planner�s problem is given by

max
�(t);q(t)2[0;1]

Z 1

0

e��t [I(t)(!I � cT �(t)) + (1� I(t))!S � I(t)q(t)cQ] dt (194)

Disease prevalence evolves according to the di¤erential equation

_I(t) = I(t) [(1� q(t))�(1� I(t))� 
 � �(t)�] (195)

The necessary conditions for optimality (for an interior level of prevalence) are then given
by

cT + �(t)� = 0 (196)

cQ + ��(t)(1� I(t)) = 0 (197)

Note that the optimality condition for treatment is unchanged, but that the condition
for optimal quarantine di¤ers from that characterizing optimal prevention.
Last, the multiplier evolves according to the di¤erential equation

_�(t) = �(t) [�+ 
 + �(t)�� �(1� q(t))(1� 2I(t))] + [! + q(t)cQ + �(t)cT ] (198)

This version of our model is in fact a generalization of a model analyzed by Sethi
(1978). He characterizes the optimal quarantine policy in the SIS model, but without
treatment as a control instrument.
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