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Abstract

The paper models an individual who may not foresee all relevant
aspects of an uncertain environment. The model is axiomatic and
provides a novel choice-theoretic characterization of the collection of
foreseen events. It is proved that all recursive, consequentialist models
imply perfect foresight and thus cannot accommodate unforeseen con-
tingencies. In particular, the model is observationally distinct from
recursive models of ambiguity. The process of learning implied by
dynamic behavior generalizes the Bayesian model and permits the
collection of foreseen events to expand over time.
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1 Introduction

1.1 Objectives

At least since Williamson [17], economists have argued that unforeseen con-
tingencies play a central role dynamic programming and in explaining many
of the contractual arrangements and economic institutions that we observe.
Despite their apparent importance and the general intuition that no deci-
sion maker can envisage all relevant aspects of even the most restricted
economic problems, the empirical implications of unforeseen contingencies
remain largely unclear.

The objective of this paper is to propose a behavioral de�nition of un-
foreseen contingencies. The explicit choice-theoretic characterization ensures
veri�ability given suitable choice data and thus the potential empirical rel-
evance of unforeseen events. Unlike previous work on the subject, identi�-
cation is made possible by the adoption of a multi-period domain of choice.
Notably, the importance of the domain was anticipated by Kreps [13, p. 278]
who argued that intertemporal choice may provide a foundation for disentan-
gling the empirical implications of unforeseen contingencies vis-a-vis existing
models of choice.

A key result in the paper shows that practically all recursive models
of dynamic choice imply perfect foresight and hence cannot accommodate
unforeseen contingencies. The intuition behind the result is simple. In any
recursive model, an optimal course of action can be computed by applying the
method of backward induction. Evidently, backward induction presupposes
that the individual can reason through every node in the decision tree. The
result provides one way to formalize this intuition and attests to the adequacy
of the de�nition.

The prevalence of recursive methods raises the question if unforeseen con-
tingencies can be tractably and parsimoniously modeled. The paper proceeds
axiomatically in order to develop a complete model of dynamic choice which
allows for previously unanticipated events to take place. To ensure tractabil-
ity, a minimal departure from expected utility is sought. The scope of the
departure is guided by two main desiderata. First, a model of unforeseen
contingencies must give a precise behavioral expression of what it means for
an individual to be aware that there are contingencies he does not foresee.
Such awareness seems crucial to applications. As Kreps [13, p. 259] argues,
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"if one imagines that neoclassical contractual forms - relational contracting
for example - are adopted consciously by the transacting parties [...], then it
seems patent that those individuals are acting in anticipation of unforeseen
contingencies."

A second desideratum is that the model achieves a clear separation be-
tween the individual�s �perception of uncertainty�and his �tastes�. Arguably,
one of the most interesting aspects of unforeseen contingencies is how indi-
viduals revise their perception of the environment in response to objective
information about the state of the world. In Savage, perception is de�ned
by the individual�s subjective prior and dynamic consistency delivers a com-
pelling normative argument for Bayesian updating. Ideally, a model of un-
foreseen contingencies would derive an updating rule for both foresight and
beliefs from an axiom that preserves the essential normative appeal of dy-
namic consistency.

The aforementioned result shows that dynamic consistency must be nec-
essarily weakened in order to accommodate unforeseen contingencies. A nat-
ural and weaker assumption is to require that violations of dynamic consis-
tency arise only when previously unanticipated events alter the individual�s
perception. As the paper shows, the axiom characterizes a generalization of
Bayesian updating known in statistics as the method of retrospective con-
ditioning. Diaconis and Zabell [4] provide a discussion and Zabell [18] em-
phasizes the importance of unanticipated events in problems of statistical
inference. A main feature of the rule is that the collection of foreseen events
expands over time.

1.2 Examples

A major challenge in identifying the empirical implications of limited fore-
sight is outlined in the concluding remarks of Dekel, Lipman, and Rustichini
[3, p.540]:

"One stumbling block [...] is that we want to distinguish be-
tween unforeseen contingencies and �standard�uncertainty aver-
sion. By the latter, we mean those models, such as nonadditive
probability, which are intended to represent an agent who knows
the state space but not the appropriate probabilities and behaves
�conservatively�because of this lack of knowledge. Conceptually,
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at least, there is a di¤erence between this and not knowing the
state space and behaving conservatively as a result. However,
this distinction is di¢ cult to make precise. Intuitively, we want a
problem in which it is di¢ cult for the agent to translate the op-
tions into utilities and where the agent exhibits some aversion to
this di¢ culty. But how can we distinguish this from translating
the options easily into utility space but then being uncertainty
averse on the utility space?"

The empirical implications of limited foresight and uncertainty aversion
would be disentangled if one could �nd a class of actions whose ranking does
not require an assessment of likelihoods but is su¢ ciently rich to reveal the
individual�s knowledge of the state space. Since beliefs would be irrelevant
for the evaluation of such actions, �conservative�behavior can be justi�ed
only if some contingencies are unforeseen. In e¤ect, the �stumbling block�
alluded to by Dekel, Lipman, and Rustichini [3] reduces to the problem of
�nding such a class. The paper proposes one possible solution. As the next
example shows, the adoption of a multi-period domain of choice plays a key
role.

1.2.1 Static Behavior

Consider an individual, Jones, who is contemplating an investment in a for-
eign country. He has two actions at his disposal, L and R, whose conse-
quences unfold over a three-period horizon. The relevant environment is
described by two contingencies, �storm�(S) and �political unrest�(U). Uncer-
tainty resolves successively and can be represented diagrammatically as the
event tree in Fig. 1. Every branch of the tree corresponds to a complete
resolution of uncertainty or a possible state of the world. For example, the
uppermost branch corresponds to the state (S,U). In the �gure, the event
tree is depicted twice, once for each action, and numbers inside the boxes
denote each action�s respective state-contingent payo¤s. For example, the
choice of action L (left) results in a loss of $2 in period t = 2 if the state
(S,U) obtains. Finally, notice that no relevant events take place in the �nal
period. This normalization is not essential to understanding the example
and its signi�cance would be clari�ed in later chapters.

The depicted representation of the actions L and R as acts, that is, as
mappings from states of the world into payo¤s, is interpreted as a descrip-
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Figure 1: State-contingent payo¤s of the actions L (left) and R (right).

tion of objective reality. Jones�s perception is not a primitive of the model.
Rather, in a manner consistent with revealed preference analysis, Jones�s
conceptualization of what might happen is derived endogenously given his
observed ranking of the available actions. To keep details at a minimum and
bring out the importance of the domain, suppose Jones is risk-neutral and
does not discount the future.1.

Suppose �rst that Jones �foresees�all possible contingencies where fore-
sight is to be understood informally. For example, one can imagine that
Jones himself can draw the picture and sketch both physical actions as the
exact state-contingent acts depicted in the �gure. In the words of Dekel,
Lipman, and Rustichini [3], Jones has perfect foresight if he can �translate�
all actions into �utilities�. If Jones can do this, he can easily deduce that
both actions are e¤ectively certain: in every state of the world, that is, along
every branch of the tree, the payo¤s of either action add up to a total of $10.
Jones would then be indi¤erent between L and R and the action which pays
$10 at the time of choice:

L �0 10 and R �0 10 (1.1)

The rankings in (1.1) are important in that they provide a refutable predic-
tion of perfect foresight that is independent of whatever beliefs Jones might

1The assumption that the individual does not discount the future is relaxed in the
formal model. For ease of exposition, risk neutrality is maintained throughout. It should
be viewed as a normalization that can be justi�ed in the familiar way by adopting an
Anscombe and Aumann [2] formulation.
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happen to entertain. In particular, these rankings obtain necessarily even if
Jones was unsure about the likelihood of some events and was averse to the
implied ambiguity. The point is that, so long as Jones foresees the events, his
assessments of likelihood are irrelevant to the evaluation of e¤ectively certain
actions.

To turn these observations into an operational choice-theoretic de�nition
of foresight, consider the rankings:

L �0 10 and R �0 10 (1.2)

How can one interpret such behavior? The e¤ectively certain action R entails
a ten-dollar bet on the event S paying in period t = 2; and exactly the same
bet on :S paying in period t = 3. The indi¤erence R �0 10 reveals that
Jones understands the �structure�of the action R, namely, that the action
comprises two bets which jointly o¤set one another. This could mean that
Jones himself can draw a tree that looks very much like the state-contingent
act in Fig. 1. Notice, however, that for the above indi¤erence to obtain,
Jones�s tree need only depict the possibility of a storm. Mathematically, all
Jones needs to do is draw the smallest tree with respect to which the act
induced by R is measurable. To summarize, if such indi¤erence obtains for
e¤ectively certain actions involving bets on the S and :S, the paper concludes
that the events are foreseen.

In contrast, the second ranking L �0 10 reveals that Jones cannot trans-
late the action L into the �nely-tuned act depicted in the �gure. Such knowl-
edge would be su¢ cient to deduce the e¤ective certainty of the action. Such
knowledge seems to be also necessary. For example, thinking of his possible
payo¤s in the event of no storm, Jones might have some understanding that
his payo¤s are uncertain. He may further know that he can win at least $10
in period t = 2, and lose at most $3 in the next. However, without foreseeing
the exact tree, it is di¢ cult to deduce that the implicit uncertainty cancels
out. The ranking L �0 10 is thus interpreted as being indicative of the fact
that political unrest is unforeseen.

The ability to test Jones�s knowledge of the state space independently of
his beliefs is speci�c to the multi-period domain of choice and the existence
of nontrivial e¤ectively certain actions. If all uncertainty resolves in a single
period, the only e¤ectively certain actions are constant acts whose ranking
reveals no information about Jones�s perception of events. Conversely, any
nontrivial act is uncertain and its evaluation requires an assessment of beliefs.
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This is the �stumbling block�encountered in atemporal settings and alluded to
in Dekel, Lipman, and Rustichini [3]. Put di¤erently, the atemporal domain
is too �small� to separate ambiguity aversion from limited foresight. The
conclusion is con�rmed by the results in Epstein, Marinacci, and Seo [7],
Ghirardato [9], Gilboa and Schmeidler [11] and Mukerji [15].

1.2.2 Dynamic Behavior

To illustrate the implications of unforeseen contingencies for dynamic behav-
ior, suppose Jones has limited foresight in period t = 0 but understands the
environment perfectly in period t = 1. Denote his conditional preferences
in the latter period by �1;S and �1;:S, as the event S, or respectively :S,
obtains. The choices below contrast Jones�s posterior and prior valuations of
the actions L and R:

L �1;S 10, L �1;:S 10 and L �0 10 (1.3)

R �1;S 10, R �1;:S 10 and R �0 10 (1.4)

The rankings in (1.3) and (1.4) reveal two important characteristics of dy-
namic choice under limited foresight.

The premium required for distant, poorly foreseen bets disappears as
time unfolds and Jones�s perception of the environment improves. The cor-
responding rankings in (1.3) imply a violation of dynamic consistency that is
precluded by the standard approach to dynamic choice. The violation arises
as Jones learns aspects of the environment he did not anticipate and could
not have taken into account ex ante.

In contrast, the indi¤erence R �0 10 reveals that Jones foresees the im-
mediate possibility of a storm. Then, he evaluates the action consistently
over time as indicated by the conditional preferences in (1.4). The rank-
ings illustrate the paper�s approach to modeling coherent dynamic behavior
when some contingencies are unforeseen: The individual is forward-looking
and revises his plans only when unanticipated circumstances contradict his
perception.
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2 Static Model

2.1 Domain

The objective environment is described by a state space 
 and a �nitely
generated �ltration F := fFtg where time varies over a �nite horizon T =
f0; 1; :::; Tg. An action taken by the individual induces a real-valued, fFtg-
adapted process of outcomes. Call any such process an act and denote generic
acts by h; h0. An act h is often written as a sequence (h1; h2; :::hT ) where
ht : 
 ! R is Ft-measurable for every t. The set of all acts H is a mixture
space under the obvious operation.

The distinction between actions and acts is an important part of the
model. Physical actions, such as the purchase of a dividend-paying stock,
comprise the individual�s domain of choice. Acts are a mathematical con-
struct used to model the relevant uncertainty: each act maps states of the
world into outcomes. The paper assumes that the modeler observes the rank-
ing of actions and constructs the corresponding acts. Under the assumption
that each act is induced by a unique action, the observable choice over actions
induces a unique preference over acts. The latter is adopted as a primitive
of the model.

For any act h, let F(h) denote the smallest �ltration with respect to
which the act h is adapted. Conversely, for any sub�ltration G of F , HG is
the subset of all G-adapted acts. For every t, �Gt is the partition generating
the algebra Gt and, for every !, Gt(!) denotes the atom in �Gt containing !.
Since FT is �nitely generated, the latter is well-de�ned. It is assumed that
FT = FT�1. Thus, the individual lives for another period after all relevant
uncertainty is resolved. As explained in the next section, the assumption
guarantees that the subset of e¤ectively certain acts is rich. In particular, it
generates the �ltration F .2

For any outcome x 2 R, let x denote the constant act paying x in every
period and every state of the world. Given any act h and state !, let h(!)
denote the act (h1(!); h2(!):::; hT (!)). Note that outcomes of the act h(!)
may depend on the time period but not on the state of the world.

2The assumption is redundant in an in�nite-horizon model. See the next section for
further discussion.
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2.2 De�nition of Foreseen Events

The section introduces the behavioral de�nition of foreseen events. The ex-
plicit, choice-theoretic characterization ensures veri�ability given suitable
choice data and thus the potential empirical relevance of unforeseen con-
tingencies. The main preliminary step identi�es a rich class of acts whose
ranking does not require an assessment of likelihoods but is su¢ ciently rich
to reveal the individual�s knowledge of the environment.

Building on the introductory example, de�ne an act h to be e¤ectively
certain if

h(!) � h(!0) for all !; !0 2 
:

Theorem 6 shows that any e¤ectively certain act h is necessarily indi¤erent
to the act h(!) whenever preference can be represented by a recursive utility
function. The motivating example suggests that such indi¤erence is intuitive
only if the individual has perfect knowledge of the relevant environment.
Consequently, and in contrast to the standard model, the paper does not
impose indi¤erence for all e¤ectively certain acts a priori. Instead, it takes
the subset of acts for which indi¤erence obtains as indicative of the collection
of foreseen events.

An e¤ectively certain act h is subjectively certain if for all e¤ectively
certain, F(h)-adapted acts h0:

h0 � h0(!) for all ! 2 
:

The de�nition of subjective certainty incorporates two complementary
requirements. First, any subjectively certain act h must be indi¤erent to
h(!) for every ! 2 
. This is true for the act R in the introductory example
(1.2). There, the indi¤erence R � 10 reveals that the Jones foresees the
contingencies S and :S. Second, the subjective certainty of h requires that
the same indi¤erence obtain for all other F(h)-adapted, e¤ectively certain
acts. For example, suppose one were to replace the $10 outcomes ofR by $15.
The new act, say R0, is e¤ectively certain, and, by construction, entails bets
on the same events S and :S. The original act R is then subjectively certain
only if R0 is indi¤erent to the sure payment of $15. In e¤ect, subjective
certainty is a property of the events S and :S and is robust to changes in the
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act�s outcomes. The property motivates the behavioral de�nition of foreseen
events.

De�nition 1 An event is foreseen if it belongs to the �ltration, G, induced
by the subset of subjectively certain acts. An act is foreseen if it is G-
adapted.

The scope and applicability of this de�nition merit some discussion. As a
behavioral test of unforeseen contingencies, subjective certainty is powerful
only in a multi-period domain of choice. If all uncertainty resolves in a
single period, the ranking h � h(!) may be alternatively interpreted as an
instance of state-dependent preferences. This interpretation is not valid in a
temporal setting because subjective certainty is no longer implied by state-
independence. The latter is evident from the ranking L � 10 in (1.2) and
the fact that preferences in the introductory example are risk-neutral and a
fortiori state-independent.

The temporal domain is important in that it permits the construction
of nontrivial e¤ectively certain acts. For example, consider the construction
of the act R: for a given event A, there is a $10 bet on A that pays o¤
in period k, and an analogous bet on Ac that pays o¤ in period k0 6= k.
Thus, the event A belongs to at least two algebras Fk 6= Fk0 in the objective
event tree fFtg. In a �nite-horizon model, this is possible if and only if
A 2 FT�1. Consequently, the proposed distinction between �foreseen�and
�unforeseen� is empirically relevant only for events in FT�1. In particular,
the distinction becomes moot in the extreme case when F0 = FT�1. The
latter case is isomorphic to an atemporal model since all uncertainty resolves
in a single period. For expositional ease, the paper assumes that FT = FT�1,
or equivalently, that the distinction is relevant for all events in the objective
environment.

The subset of e¤ectively certain actions is the smallest subset whose rank-
ing is su¢ cient to identify the collection of foreseen events. The empirical
content of limited foresight, however, is not exhausted by the speci�cation
of foreseen events. How does a self-aware individual perceive and evaluate
actions whose outcomes depend on unforeseen states of the world? How do
we model learning in response to objective information? The second ques-
tion is especially pertinent since limited foresight necessitates a weakening
of dynamic consistency and thus a generalization of Bayesian updating. An
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answer to these questions requires that the de�nition is incorporated in a
complete model of dynamic choice. The rest of the paper proceeds axiomat-
ically to develop and characterize such a model.

2.3 Axioms

The individual�s choices among physical actions induce a preference ordering
� on the set of objective acts H. This section adopts a set of axioms on the
induced preference �. Some of the axioms have a standard interpretation if
the individual has perfect knowledge of the environment. In this case, his
subjective perception and the primitive objective environment coincide. If
perception is coarse, however, the axioms make implicit assumptions about
how perception di¤ers from, and approximates, the objective world. The �rst
two axioms fall in this category and their content is reinterpreted accordingly.

Order The preference � is complete and transitive.

Mixture Continuity For all acts h � h0 � h00, there exist �; � 2 (0; 1) such
that

h � �h+ (1� �)h00 � h0 � �h+ (1� �)h00

Convexity For all h; h0 2 H, h � h0 implies �h+ (1� �)h0 � h.

To understand Convexity, it is useful to imagine a hypothetical, auxiliary
step in which the individual is asked to compare the subjective mixture of
h and h0 to either action. That is, the individual can mix the outcomes of
h and h0 as he perceives them. The subjective mixture �smooths�outcomes
across states foreseen by the individual. Aware that his perception may
be incomplete, the individual prefers the mixture. The latter hedges his
exposure to contingencies that he fears might be only a coarse approximation
to the world. Convexity requires that the objective mixture �h+(1��)h0 be
preferred to its subjective counterpart. The former smooths the uncertainty
within as well as across any of the foreseen events.

Certainty Independence For all acts h; h0 2 H and e¤ectively certain,
foreseen acts g:

h � h0 if and only if �h+ (1� �)g � �h0 + (1� �)g.
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To understand Certainty Independence, imagine the mixture of the action
L and the subjectively certain actionR in examples (1.1) and (1.2). SinceR is
foreseen, it is constant within the events S and :S foreseen by the individual.
As such, it cannot hedge the poorly understood uncertainty within these
events. Since the action is e¤ectively certain, it also provides no hedging
across the collection of foreseen events. The conjunction of these arguments
motivates Certainty Independence.

To illustrate the next axiom, consider the foreseen action R in the in-
troductory example and the corresponding ranking R � 10. The action R
entails a ten-dollar bet on the event S paying in period t = 2 and an analo-
gous bet on the event :S paying in period t = 3. Suppose one were to delay
the payment of these bets by one period. The new action entails bets on
the same events S and :S but pays in periods t = 3 and t = 4, respectively.
Since the events are foreseen, Stationarity requires that the ranking remains
the same.

Stationarity For all acts h; h0 2 H and for all outcomes x 2M ,

(h0; :::; hT�1; x) � (h00; :::; h0T�1; x) if and only if
(x; h0; :::; hT�1) � (x; h00; :::; h

0
T�1),

whenever the acts on the left (right) are foreseen.

The set of nodes [t�Gt in the �ltration of foreseen events correspond
to states of the world as perceived by the individual. The next axiom is
a subjective analogue of the standard monotonicity or state-independence
assumption applied to these subjective states.

Subjective Monotonicity For all acts h; h0 2 H and for all outcomes
x 2 R,

hAx � h0Ax for all A 2 [t�Gt implies h � h0.

Consider an action h whose continuation act at some node Ft(!) is non-
constant: h� (!0) 6= h� (!

00) for some � > t and !0; !00 2 Ft(!). Say that h0
simpli�es h if h0 has a constant continuation at Ft(!) and equals h elsewhere.
By construction, h0 depends on events that are strictly closer in time. The
next axiom requires that h0 is foreseen whenever h is. Thus, events closer in
time are easier to foresee.
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Simpli�cation If g0 simpli�es a foreseen act g, then g0 is foreseen.

De�ne nullity in the usual way: the event A 2 FT is�-null if h(!) = h0(!)
for all ! 2 Ac implies h � h0. The next axiom ensures that every foreseen
event is nonnull.

Nonnullity For every foreseen event A, there exist outcomes x > y; z such
that xAz � yAz.

2.4 Representation

2.4.1 The Subjective Filtration

The section introduces the class of �ltrations used to model the individual�s
perception of the objective environment (
; fFtg).

De�nition 2 A sub�ltration fGtg of fFtg is sequentially connected if

�Gtn�Ft � �Gt+1 for all t < T:

To understand the de�nition, consider two disjoint events A1 and A2,
either of which may be realized in period t. The individual foresees their
union A1 [A2 but does not foresee the �ner contingencies A1 and A2. Thus,
A1 [ A2 2 �Gtn�Ft. The de�nition of a sequentially connected �ltration
requires that whenever the individual�s perception of period t is coarse, he
does not foresee any of the more distant contingencies within A1 [ A2. In
particular, A1 [ A2 2 �Gt+1 . The requirement captures the intuition that
events more distant in time are more di¢ cult to foresee.

It is not di¢ cult to see that any sequentially connected �ltration fGtg is
fully determined by the algebra GT :

Gt = Ft \ GT for all t 2 T . (2.1)

De�ne an algebra to be sequentially connected, if it induces a sequentially
connected �ltration via (2.1). The rest of the paper uses G interchangeably
to denote the �ltration and the algebra which generates it.

Sequentially connected �ltrations include a number of special cases which
admit intuitive interpretations.
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Example 1 (Fixed Horizon) The individual foresees all events up to some
period k:

Gt = Ft for all t � k and Gt = Fk for all t > k.

More generally, the individual may not foresee the contingencies describ-
ing an unlikely event A, but have a better understanding of the contingencies
describing its complement. his depth of foresight is then a random variable
and the corresponding sequentially connected algebra can be modeled as a
stopping time.

Example 2 (Random Horizon) The individual foresees all events up to a
stopping time � , where

� : 
! T and f! : �(!) = kg 2 Fk for all k 2 T .

The �ltration fGtg induced by the stopping time �

Gt := fA 2 Ft : A \ f! : �(!) = kg 2 Fk for all k 2 T g for t 2 T

is sequentially connected.3

Sequentially connected �ltrations arise as the outcome of a satis�cing
procedure for simplifying decision trees proposed by Gabaix and Laibson [8]
in a setting of objective uncertainty.

Example 3 (Satis�cing) The individual ignores branches of the decision tree
whose probability is lower than some threshold � 2 [0; 1].4

The Gabaix and Laibson [8] procedure permits a parsimonious parame-
trization of sequentially connected �ltrations via the threshold parameter
�.

The class of sequentially connected �ltrations excludes the following sub-
�ltration:

G = fF0;F0; :::;F0;FTg
3Appendix 6.6 shows that sequentially connected �ltrations inherit the lattice struc-

ture of stopping times. Speci�cally, the supremum (in�mum) of sequentially connected
�ltrations is sequentially connected.

4Appendix 6.6 provides a detailed translation of the Gabaix-Laibson de�nition into the
setting of this paper.
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In this example, the individual foresees all possible contingencies (GT = FT )
but he �delays�the resolution of uncertainty. That is, he believes erroneously
that all information is revealed in the last period. Since this �ltration does
not capture a coarse perception of the environment, it is precluded by De�-
nition 2.

2.4.2 Subjective Acts

In Savage�s [16] theory of subjective probability, the individual behaves as
if he contemplates all possible states of the world and anticipates the out-
comes that any given physical action might induce. That is, it is as though
the individual himself perceives physical actions as the acts describing the
relevant, objective uncertainty.

Savage [16, p. 92] was troubled by this implication of the theory and
introduced the notion of small worlds. Like the subalgebra of foreseen events
G, a small world is a partition of the state space of all relevant uncertainty
which Savage called the grand world. He used the following example. An
individual (Jones) faces the decision whether to buy a certain convertible or
not. In the simplest analysis, Jones perceives no uncertainty and regards
the convertible as a sure enjoyment. Accordingly, Savage modeled Jones�
perception of the convertible as a small world consequence. In reality, many
contingencies may a¤ect Jones�decision. As Savage wrote, Jones �would not
buy the convertible if he thought it likely that he would be immediately
faced with a �nancial emergency arising out of the sickness of himself or of
some member of his family.� The small world consequence is therefore only
an approximation to a nonconstant grand world act in the universal state
space.

Savage�s primary emphasis in the Foundations of Statistics was norma-
tive. Both the small and grand worlds are therefore taken as primitive con-
structs which Jones could in principle use to make better decisions. From
a descriptive standpoint, Jones�perception has to be derived endogenously
from primitives observable to the modeler. To emphasize the endogeneity
of small world acts, the paper refers to them as subjective. The modeler
observes the ranking of physical actions, such as the convertible, and maps
each physical action into a unique act in the set H. The latter is interpreted
as an objective description of the relevant environment in the sense that it is
constructed by the modeler. These concepts and the relations between them
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can be represented diagrammatically:

1-1
Physical actions  ! Objective acts

b� # . �

Subjective acts

The mapping b� maps physical actions into subjective acts. The latter depict
the individual�s perception of the environment. The mapping � makes the
graph commute.

The diagram makes it clear that even though physical actions are not
explicitly modeled the individual�s perception of actions can be represented
by means of the mapping � from objective into subjective acts. Savage�s
theory of subjective expected utility can be interpreted as a special case
in which � is the identity mapping from the set of objective acts H into
itself. The next de�nition introduces a general class of mappings used to
model Jones�perception of the convertible when some contingencies might
be unforeseen.

De�nition 3 A G-approximation mapping is a continuous, concave func-
tion � from H into HG such that for all acts h; h0 2 H; g 2 HG; nonnegative
real numbers � and events A 2 Gt for t 2 T :

(i) �(�h+ g) = ��(h) + g;

(ii) (�h)t j A = (�h0)t j A whenever ht j A = h0t j A.

Subjective acts respect the �ltration G of foreseen events. Formally, any
G-approximation mapping takes every objective acts into G-adapted sub-
jective act. The property says that an individual cannot imagine bets on
contingencies he does not foresee. In addition, property (i) implies that the
function � maps each G-adapted objective act into itself. Thus, the subjec-
tive and objective acts coincide for any action that is foreseen. The next
example provides a simple, albeit extreme illustration of a G-approximation
mapping.
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Example 4 (Approximation From Below) For every h 2 H, let �h be the
lower G-adapted envelope of h:

(�h)t j A := min!2A ht(!), for every t 2 T and A 2 �Gt.

Then, � is a G-approximation mapping.

The next lemma provides a convenient way to parametrize the class of
G-approximation mappings. For every t and A 2 Ft, let ba1(A;Ft) denote
the set of all additive set functions p such that p(A) = 1.

Lemma 1 � is a G-approximation mapping if and only if for every t and
every A 2 �Gt there exist a nonempty, closed, convex subset CA of ba1(A;Ft)
such that:

(�h)t j A = min
p2CA

Z
A

ht dp. (2.2)

2.4.3 Representation Theorem

This section completes the description of the static model.

De�nition 4 A preference relation � on H has a limited foresight rep-
resentation (G;�; C) if it admits a utility function of the form:

V (h) = min
p2C

Z



P
t �

t(�h)t dp, (2.3)

where � > 0, G is the �ltration of foreseen events, G is sequentially connected,
� is a G-approximation mapping, and C is a closed, convex subset in the
interior of the simplex �(
;GT ).

The �ltration G and the mapping � de�ne the individual�s model of the
environment - the contingencies he foresees and the subjective act he at-
taches to any physical action. The nonsingleton set of priors C re�ects the
individual�s awareness that his model of the environment may be incomplete.

Theorem 2 A preference � satis�es Order, Mixture Continuity, Convexity,
Certainty Independence, Stationarity, Subjective Monotonicity, Simpli�ca-
tion and Nonnullity if and only if it has a limited foresight representation
(G;�; C). Moreover, the representation is unique.
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2.4.4 Discussion

In applications, one begins by �rst specifying the components of the repre-
sentation: a sequentially connected �ltration G 0, a mapping �0 and a set of
priors C 0 de�ned on the algebra G 0T . Preference is then induced via the utility
function in (2.3). A requirement of the representation is that G 0 is the �l-
tration of foreseen events for the induced preference. The requirement is not
satis�ed for any choice of utility components. To emphasize the point, this
section gives an example of a triple (G 0;�0; C 0) for which G 0 is strictly coarser
than the �ltration of foreseen events. Su¢ cient conditions on the mapping
�0 are then provided that guarantee the required property and hence that
(G 0;�0; C 0) constitutes a limited foresight representation.
To begin, consider the triple (G 0;�0; C 0), where G 0 is the trivial �ltration

fF0;F0; :::;F0g, C 0 is the degenerate measure on F0 = f
;?g, and where the
mapping �0 is de�ned as follows:

(�0h)t(!) :=

Z
ht dp, for every ! 2 
 and t 2 T , (2.4)

for some measure p on FT . The trivial �ltration suggests the interpretation
of zero foresight: the individual knows that �something may happen�but is
unable to specify any �ner contingencies. Accordingly, the mapping �0 takes
each objective act into a constant subjective act.

The trivial �ltration is sequentially connected and, by Lemma 1, the
function �0 is a G 0-approximation mapping. To verify whether G 0 is the
collection of foreseen events, consider the preference ordering induced by the
utility function in (2.3):

V 0(h) :=
P

t �
t(�0h)t. (2.5)

Substituting (2.4) into (2.5) and rearranging, one obtains:

V 0(h) =
P

t �
t

�Z



ht dp

�
=

Z



�P
t �

tht
�
dp. (2.6)

The expected-utility representation in (2.6) shows that all events are foreseen
in the sense of De�nition 1. Conclude that the triple (G 0;�0; C 0) is not a
limited foresight representation of the induced preference. In fact, the unique
such representation (G;�; C) is given by the expected-utility functional in
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(2.6) where G is the objective �ltration F , � is the identity mapping from H
into itself, and beliefs C consist of the single prior p.
The example shows why an explicit choice-theoretic de�nition of foreseen

events is important. For arbitrary triples (G 0;�0; C 0), the intended distinc-
tion between �foreseen�and �unforeseen�events as embodied in the functional
component G 0 may have no behavioral content. Moreover, for any given pref-
erence, there will be several candidate �ltrations G 0 for which a utility exists
and no guidance how to select the right one. A limited foresight representa-
tion makes such a selection. It has the merit of being based on an intuitive
and behavioral characterization of foreseen events.

The next lemma proves that for generic triples (G 0;�0; C 0), G 0 is in fact
the �ltration of foreseen events. To state the result, �x a sequentially con-
nected �ltration G 0 and a closed, convex set of priors C 0 in the interior of
�(
;G 0T ). Recall that, by Lemma 1, every G 0-approximation mapping �0 can
be identi�ed with a collection fC 0Ag where C 0A is a closed, convex subset of
ba1(A;Ft) as A and t vary over all cells of the �ltration G 0.

Lemma 3 A triple (G 0; fC 0Ag; C 0) is a limited foresight representation of the
induced preference whenever every set C 0A has nonempty interior.

The following speci�cations of the approximation mapping satisfy the
su¢ cient conditions.

Example 5 (Approximation From Below) For every t 2 T , and h 2 H, �0h
is the lower G 0-adapted envelope of h. By Lemma 3, (G 0;�0; C 0) is a limited
foresight representation of the induced preference.

A notable feature of Example 5 is that the model is fully speci�ed by the
�ltration G 0 and the set of priors C 0. A drawback is the �coarseness�of the
approximation mapping. In terms of the representation derived in Lemma
1, each set C 0A in the construction of �0 equals the entire simplex �(A). To
provide a less extreme approximation, take C 0A to be an �-contraction of the
simplex around a focal measure p� in �(A):

C 0A := f�p+ (1� �)p� : p 2 �(A)g.

The corresponding approximation mapping is then fully determined by the
�ltration of foreseen events and the single parameter 0 < � < 1.
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Example 6 (�-Contamination) For every t 2 T and every A 2 �G0t, CA0 is
an �-contraction of the simplex. By Lemma 3, (G 0;�0�; C 0) is a limited foresight
representation of the induced preference.

3 Dynamic Model

3.1 Axioms

This section develops the dynamic model of limited foresight. The primitive is
an F-adapted process of conditional preferences f�t;!g where �t;! describes
the ranking of actions in state ! and period t. It is assumed throughout
the section that every conditional preference �t;! admits a limited foresight
representation (Gt;!;�t;!; Ct;!).
The �rst axiom says that conditional preferences at t and ! do not depend

on the actions�payo¤s in any alternative history.

Consequentialism For each t and ! and all acts h; h0,

h� (!
0) = h0� (!

0) for all � � t and !0 2 Ft(!) implies h �t;! h0.

Consequentialism restricts the scope of limited foresight modeled in this
paper. The stated indi¤erence requires that whenever the relevant continua-
tion acts are objectively identical, they are perceived as identical. Intuitively,
perception may be incomplete, but not delusional. The individual does not
imagine di¤erences if there are none.

The next axiom requires that tastes do not depend on the time and
state of the world. As in the static model, limited foresight pertains to
the individual�s perception of uncertainty and has no implications for the
evaluation of constant acts.

Dynamic State Independence For each t and !,

(x0; :::; xt�1; yt; :::; yT ) �t;! (x0; :::; xt�1; y0t; :::; y0T ) if and only if

(x0; :::; xt�1; yt; :::; yT ) �0 (x0; :::; xt�1; y0t; :::; y0T ).
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To understand the next axiom, consider an environment in which one of
three events A1, A2 and A3 can be realized in period t = 1. An individual
with perfect foresight evaluates all actions consistently:

h �1;Ai h0 for all i implies h �0 h0. (3.1)

If he were to learn A1 [ A2 at some hypothetical intermediate stage � , then
intertemporal consistency would similarly imply:

h �1;A1 h0 and h �1;A2 h0 implies h ��;A1[A2 h0. (3.2)

The implications in (3.1) and (3.2) re�ect an individual who plans consis-
tently. he knows all possible contingencies and anticipates accurately the
future choices he is going to make. This knowledge is incorporated in her
behavior in the period t = 0. It is important to emphasize that the hypothet-
ical stage � and the preferences ��;A1[A2, ��;A3 in (3.2) are not part of the
formal model. However, they prove useful in interpreting the implications of
limited foresight for dynamic behavior.

To continue the example, consider an individual who initially foresees
only the events A1 [A2 and A3. Thinking of the future, he contemplates his
behavior conditional on the events he foresees. If �a1;A1[A2 and �

a
1;A3

denote
these anticipated preferences, then:

h �a1;A1[A2 h0 and h �a1;A3 h0 implies h �0 h0. (3.3)

As in (3.1) and (3.2), the implication in (3.3) describes an individual who
is forward-looking and plans ahead. However, the anticipated preferences
re�ect prior foresight and may di¤er from the individual�s actual future be-
havior. Furthermore, the anticipated preferences may di¤er from the hypo-
thetical rankings��;A1[A2 and��;A3 used in (3.2). It turns out that the latter
di¤erence is easier to analyze since the conditioning events, namely, A1 [A2
and A3, are the same in both cases. Speci�cally, the preference �a1;A1[A2 rep-
resents behavior if the individual were to learn the event A1[A2 and perceive
the world as he does at t = 0. In contrast, the preference ��;A1[A2 represents
behavior if the individual were to learn the event A1 [ A2 and perceive the
world as he does at t = 1.

These perceptions necessarily coincide only when the actions h and h0 are
foreseen at t = 0. Then (3.2) and (3.3) imply:

h �1;Ai h0 for all i ) h ��;A1[A2 h0 and h ��;A3 h0
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) h �a1;A1[A2 h
0 and h �a1;A3 h

0

) h �0 h0.

The above implications motivate the next axiom. It formalizes the present
approach to modeling sophisticated dynamic behavior when some contingen-
cies are unforeseen. Namely, it captures an individual who is forward-looking
and revises his plans only when unanticipated circumstances contradict his
perception. The approach is illustrated in the introductory examples (1.3)
and (1.4).

Weak Dynamic Consistency For each t and ! and for all acts g; g0 in
HGt;! such that g� = g0� for all � � t,

g �t+1;!0 g0 for all !0 implies g �t;! g0. (3.4)

The standard axiom, Dynamic Consistency, requires that (3.4) obtain for
all acts h; h0 in H such that h� = h0� for all � � t, irrespective of whether
the acts are foreseen or not.

3.2 Representation

The process of learning implied by Consequentialism, State Independence
and Weak Dynamic Consistency is derived. Speci�cally, the section char-
acterizes how perception of the environment {Gt;!;�t;!} and beliefs {Ct;!}
evolve over time.

The �rst implication captures a notion of expanding foresight. That is,
for every t and !, the posterior �ltration Gt+1;! re�nes the prior �ltration
Gt;!. To state this formally, let Gt;! \ Ft+1(!) denote the restriction of the
prior �ltration Gt;! to the subtree emanating from the node Ft+1(!).5 The
latter event is realized and is thus known by the individual at period t + 1
and state !.

De�nition 5 A process of �ltrations fGt;!g is re�ning if Gt+1;! re�nes
Gt;! \ Ft+1(!) for all t and !.

5For every subset A of 
, an algebra G on 
 induces the algebra G\A := fB\A : B 2 Gg
on A. A �ltration fGtg induces the �ltration fGtg \A := fGt \Ag on A.
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The next step describes how the process of conditional beliefs fCt;!g
evolves over time. Some preliminary de�nitions are necessary. For a set of
priors C on the objective algebra FT , de�ne the set of prior-by-prior Bayesian
updates by

Ct(!) := fp(� p Ft(!)) : p 2 Cg,

and de�ne the set of conditional one-step-ahead measures by

C+1t (!) := fmargFt+1p : p 2 Ct(!)g.

The following de�nition generalizes the familiar decomposition of a measure
in terms of its conditionals and marginals to the decomposition of a set
of measures C. The requirement is studied in Epstein and Schneider [5],
who discuss its role for modeling dynamically consistent behavior when the
individual has more than a single prior. Formally, de�ne a set C to be fFtg-
rectangular if for all t and !,

Ct(!) = f
Z



pt+1(!
0) dm : pt+1(!

0) 2 Ct+1(!0) for all !0 and m 2 C
+1

t (!)g.

The main feature of rectangularity is that the decomposition on the right
combines a marginal from C+1t (!) with any measurable selection of condi-
tionals. This will typically involve conditionals that are �foreign�to a given
marginal. If the set C is a singleton, there are no foreign conditionals and
the de�nition of rectangularity reduces to the standard decomposition of a
probability measure.

Bayesian updating presupposes that prior beliefs are de�ned for every
event in the objective algebra. Suppose instead that foresight expands grad-
ually over time. This would be the case if, for example, a previously unantici-
pated event takes place. How should knowledge of the event be incorporated
into the corpus of earlier beliefs? How should those beliefs be revised in
response?

The rule to be described next is known in statistics as the method of
retrospective conditioning. Diaconis and Zabell [4] provide a discussion. To
convey its main idea, it is su¢ cient to focus on the special case when C0
consists of a single prior. The method comprises a two-step procedure. First,
as the collection of foreseen events G0 expands over time, the individual
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extends his prior C0 to the new and �ner algebra of foreseen events. The
extension is consistent in that it preserves the original probabilities on G0.
The extended prior is then updated by Bayes rule in response to objective
information about the state of the world. The name �retrospective� refers
to the �rst stage of the method in which updating is temporarily suspended
until a new �prior� is �retrospectively� quanti�ed on the richer probability
space G1. Afterwards, standard conditioning takes place.
The successive extension of beliefs results in a probability measure C

de�ned on the entire objective algebra FT . The method of retrospective
conditioning can be alternatively and more parsimoniously formulated in
terms of this �shadow�probability. Namely, conditional beliefs Ct;! at every t
and ! are obtained by (i) updating the measure C using Bayes rule, and (ii)
restricting the implied posterior to the algebra of foreseen events Gt;!. This
formulation is used in the de�nition below. In its general form, C is a possibly
nonsingleton, fFtg-rectangular set of measures and updating proceeds prior-
by-prior.

De�nition 6 A process fCt;!;Gt;!g admits a consistent extension if
there exists an fFtg-rectangular, closed and convex subset C in the interior
of �(
;FT ) such that

Ct;! = fmargGt;!p : p 2 Ct(!)g for every t and !:

The next theorem shows that Consequentialism, Temporal State Inde-
pendence and Weak Dynamic Consistency fully characterize the process of
learning described by De�nitions 5 and 6.

Theorem 4 The family of preferences f�t;!g satis�es Consequentialism,
Temporal State Independence and Weak Dynamic Consistency if and only
if fGt;!g is re�ning and fCt;!;Gt;!g admits a consistent extension C.

The consistent extension C is unique whenever the individual foresees all
one-step-ahead contingencies. That is, for every t and !, Ft+1(!) belongs to
the collection of foreseen events Gt;!.6

Theorem 5 If Ft+1(!) 2 Gt;! for all t and !, the consistent extension C
provided by Theorem 4 is unique.

6Recall that Gt;! denotes both the sequentially connected �ltration at t; ! and the
algebra which generates it via (2.1).
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4 Foresight and Dynamic Consistency

The section returns to the original problem of providing a choice-theoretic
model-independent de�nition of foreseen events. Accordingly, a general set-
ting is once again adopted whereby no utility representation is assumed for
the process of conditional preferences f�t;!g. The analysis is motivated by
Kreps�[13, p.278] intuition that dynamic behavior may reveal the collection
of foreseen events and provide a foundation for separating limited foresight
from existing models of uncertainty. The main result establishes a close
connection between the intertemporal consistency of behavior and the sta-
tic ranking of e¤ectively certain actions. As a corollary, the section shows
how intertemporal consistency may provide an alternative and equivalent
characterization of foreseen events.

Theorem 6 If conditional preferences {�t;!} satisfy Order, Consequential-
ism, Temporal State Independence and Dynamic Consistency, then all events
must be foreseen. That is, for all e¤ectively certain acts h in H, it is neces-
sarily true that h �0 h(!) for all ! in 
.

It seems intuitive that any meaningful de�nition of foreseen events must
be related to the intertemporal consistency of behavior. For example, imagine
that you observe conditional preferences at every node and �nd that behavior
is dynamically consistent. If behavior is also consequentialist, the individual
necessarily observes and recognizes any event that has transpired. That
is, he updates his ranking of actions in response to objective information
about the state of the world. The consistency of his behavior then �reveals�
that the individual has foreseen all possible changes of the environment and
incorporated them into his plans. Theorem 6 shows that the de�nition of
foreseen events based on the ranking of e¤ectively certain acts is consistent
with that intuition.

Theorem 6 and the above discussion focus on the special case when pref-
erences are fully dynamically consistent. To extend the analysis to more
general cases, it is useful to introduce a notion of partial consistency. For
any t and !, let Gt;! denote a subtree emanating from the node Ft(!), and
say that an act h is Gt;!-adapted if its continuation act from the node Ft(!)
is Gt;!-adapted.

De�nition 7 Conditional preferences {�t;!} are dynamically consistent
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relative to {Gt;!} if, for all ! and t < T , g �t+1;!0 g0 for all !0 2 Ft(!)
implies g �t;! g0, whenever the acts g; g0 are G

t;!
-adapted and g� = g0� for all

� � t.

How should partial consistency be interpreted? Throughout the paper,
the objective has been to model a sophisticated individual who may not fore-
see all relevant aspects of the environement but behaves �rationally�given his
perception of the world. Consistent with that view is the interpretation that
any violation of time consistency re�ects an optimal adjustment in response
to some unanticipated change of the environment. Thus, an event A is fore-
seen in period t = 0 only if all bets on A are consistently evaluated over time.
Conversely, the inconsistent evaluation of any such bet renders the event A
unforeseen.

Restating the de�nition slightly and taking into account that foresight
evolves over time, one can de�ne the process of foreseen events as the largest
process {Gt;!} relative to which behavior is dynamically consistent. Two
quali�cations turn out to be necessary when searching for the largest process.
First, attention must be restricted to the subclass of processes fGt;!g satis-
fying the following regularity property:7

Gt;!T = Gt;!T�1 for every t and !. (4.1)

The necessity of this restriction goes back to the main message of the
paper. That is, the empirical implications of unforeseen contingencies vis-
a-vis ambiguity can be disentangled only in a multi-period setting. More
precisely, any behavioral test as to whether an event A is unforeseen or not
is powerful only if the event belongs to at least two algebras Ft and Ft0 in the
objective tree. In a �nite horizon setting, this implies that tests are powerful
only if the event belongs to FT�1.
One can be more speci�c and ask why intertemporal consistency in par-

ticular cannot identify whether an event A 2 FTnFT�1 is foreseen or not.
The reason is that, in the last two periods, dynamic consistency obtains triv-
ially in the sense that it reduces to the static property of monotonicity. As
argued earlier, a behavioral de�nition of foreseen events cannot be based on

7The assumption that FT = FT�1 is not needed for any of the results in this section. If
the assumption is nonetheless maintained, then all sequentially connected subtrees satisfy
(4.1) by virtue of property (2.1). This motivates the term �regular�.
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the monotonicity of preference. If the individual has zero foresight and eval-
uates every action by its worst possible outcome, his preferences would still
be weakly monotone.

In addition to regularity, one must restrict attention to processes fGt;!g
that are re�ning in the sense of De�nition 5. To understand why the re-
striction is necessary, consider an environment in which no information is
revealed in either of the �rst two periods, i.e., F0 = F1 = f
;?g. It is
then plausible, but not necessary, that conditional preferences in those peri-
ods are identical. If that is the case, the subset f�0;�1g would be trivially
dynamically consistent, and yet, its consistency would reveal nothing about
the individual�s foresight. In fact, an injudicious appeal to Theorem 6 could
lead to the potentially erroneous conclusion that the individual has perfect
foresight. To narrow down what is foreseen, the entire process of conditional
preferences f�t;!g has to be taken into account. A behavioral distinction
between foreseen and unforeseen events is then achieved by looking at those
periods in which objective information arrives and behavior, as mandated
by Consequentialism, adjusts in response. In terms of the example, if some
or all uncertainty resolves in period t = 2, one can ignore the uninformative
period t = 0 and use the subset of preferences f�1;�2;!g to identify what is
foreseen in period t = 1. But since preferences in period t = 0 and t = 1 are
identical, any behavioral de�nition must single out exactly the same events
as being foreseen in period t = 0.

More generally, any behavioral de�nition based on intertemporal consis-
tency must use foresight in later periods as an �upper bound� in order to
narrow down what is foreseen in earlier periods in which intertemporal con-
sistency might have no bite. This is what the restriction to re�ning processes
amounts to.

Under a minimal set of axioms, the corollary below establishes the equiv-
alence of the de�nitions based on e¤ective certainty and intertemporal con-
sistency respectively. In particular, the equivalence holds for the model of
limited foresight developed in Sections 2 and 3.

Corollary 7 If a family of preferences {�t;!} satis�es Order, Consequen-
tialism, Temporal State Independence and Weak Dynamic Consistency, then
{Gt;!} is the largest regular re�ning process relative to which {�t;!} is dy-
namically consistent.
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5 Related Literature

In the literature on unforeseen contingencies, a pivotal point concerns the
interpretation of the primitive state space 
. Savage, whose primary interest
was normative and whose domain is adopted here, interpreted the state space
as a construct used by the individual to make better decisions. As part of a
positive theory, however, the state space has to be interpreted as a description
of �objective reality�in the sense that it is constructed by the modeler. The
theory developed here should be understood in this sense. Consequently, the
question whether the individual knows the state space or not becomes an
essentially empirical question which can be tested and answered within the
model.

As a way of explicating the point, one may draw a comparison with
the analysis in Kreps [13]. He takes as primitive a state space 
 which
he interprets as representing the individual�s incomplete perception of the
environment. To infer if there are other �unforeseen�contingencies, Kreps
asks how much �exibility the individual would be willing to preserve con-
tingent on any of the prespeci�ed states ! 2 
. The more �exibility the
individual wishes to preserve, the more incomplete a description of reality !
is. Kreps proceeds to derive a Savage-style representation with an extended
state space 
 � � where the contingencies � arise endogenously, that is, as
part of the representation. The extended state space �supplies�those details
missing from the individual�s perception of the environment as captured by

. As Kreps [13, p. 278] acknowledges, however, the problem whether the
derived contingencies � are foreseen or not is entirely semantic. In his words,
what he calls �unforeseen�, another may well wish to call �uncontractible�.
According to the latter view, �it isn�t that the individual does not foresee the
contingencies [�], but only that we don�t allow him to have his consumption
so �nely conditioned as he would like. So, it can be argued, we don�t have
a model of unforeseen contingencies at all, but rather a standard model of
incomplete contracts.�

Logically, the question in this paper precedes the development in Kreps
[13]. That is, the paper asks what behavior would reveal whether the contin-
gencies in the primitive state space 
 are foreseen. Notice that the question
remains relevant even if one follows Kreps and interprets 
 as a list of con-
tingencies compiled by the individual. From the standpoint of revealed pref-
erence theory, any statement about the individual�s knowledge or perception
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should be expressible in terms his choice behavior.

Is there a potential synergy of the two models? To answer the question,
suppose some contingencies in 
 turn out to be unforeseen as de�ned in this
paper. Then, at the level of static choice, it would engender no inconsistency
to follow Kreps and ask how much �exibility the individual would be willing
to preserve contingent on the events in 
 he does foresee. After all, as argued
by Kreps, this is the kind of behavior that reveals whether the individual
is acting in anticipation of the unforeseen. The approach is not pursued
here as it appears to be generally unclear how to incorporate the derived
contingencies � in a theory of dynamic choice. Kreps raises the problem but
provides no answer. To be more speci�c, if � is not a primitive of the model,
it seems that neither can be any preference pro�le intended to represent
behavior �conditional on ��. This is a severe limitation in so far as interest
in unforeseen contingencies stems primarily from the problem of adaptation.
In contrast, the development of a complete model of dynamic choice is made
possible here partly because all contingencies, foreseen or not, are part of the
primitive state space 
.

To avoid the interpretational and methodological problems in working
with an endogenously extended state space, the paper pursues a di¤erent
approach to modeling �anticipation of the unforeseen�. This is essentially the
approach developed in Gilboa and Schmeidler [11] and Epstein, Marinacci,
and Seo [7]. In these papers, the multiple prior model of ambiguity aversion
is interpreted as a �reduced-form�model of an individual who is aware that
there contingencies he does not foresee. The contribution of this paper is
to show that the two conceptually di¤erent phenomena, ambiguity aversion
and limited foresight, are also empirically di¤erent while preserving a useful
crossover between the respective models.

6 Appendix - Incomplete

All algebras in the appendix are �nitely generated. The corresponding sim-
plex� of probability measures is endowed with the standard Euclidean topol-
ogy and �� denotes its interior.

A �ltration fGtg on a state space 
 is identi�ed with the algebra G on

 � T generated by the sets A � ftg for A 2 Gt and t 2 T . Under this
identi�cation, an act h is fGtg-adapted if and only if the mapping (!; t) 7�!
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ht(!) is G-measurable. The symbol G is used interchangeably to denote the
algebra on 
� T and the �ltration fGtg on 
.
For anyA � 
; x 2M and f 2M
, fAx := f 0 2M
 where f 0(!) = f(!)

if ! 2 A, and f 0(!) = x if ! 2 Ac. For any A 2 Ft; x 2 M and h 2 H,
hAx := (h�t; htAx).

6.1 Proof of Theorem 2

Adopt the arguments in Epstein and Schneider [5, Lemma A.1] to deduce
that � has a representation:

U(h) = minq2Q
P

t �
t hqt; hti . (6.1)

Above, Q is a closed, convex subset of �t2T�(
;Ft). Denote a generic
element in Q by q := (qt)t2T . For every subset T 0 � T , projT 0(q) denotes
the vector (qt)t2T 0. Without loss of generality, set � = 1 and de�ne hq; hi :=P

t hqt; hti.

A sub�ltration G of F de�nes the following subspace of �t2T ba(
;Ft):

diag(G) := fq 2 �t2T ba(
;Ft) : margGtqt+1 = margGtqt for all t < Tg.

Note that diag(G) 6= diag(G 0) whenever Gt 6= G 0t for some t < T . Equivalently,
there exists a bijection between the diagonals of �t2T ba(
;Ft) and the set
of sub�ltrations G such that GT = GT�1. Call such sub�ltrations regular.
For a regular sub�ltration G, the following lemma establishes a basic duality
between the diagonal diag(G) and the set of e¤ectively certain acts in HG. In
view of (6.1) and after appropriate normalization, the latter can be identi�ed
with the subset:

Hc := fh 2 H :
P

t ht(!) = 0 for all ! 2 
g.

Lemma 8 q 2 diag(G) if and only if hq; hi = 0 for all h 2 HG \Hc.

Proof: To prove necessity observe that for any h 2 HG and q 2 diag(G),

hq; hi =
P

t hqt; hti =
P

t hqT ; hti = hqT ;
P

t hti . (6.2)

If h 2 HG \Hc, then
P

t ht(!) = 0 for all ! and hq; hi = hqT ;
P

t hti = 0 for
all q 2 diag(G).
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To establish su¢ ciency, �rst prove that for any h 2 HG

h 2 Hc if and only if hq; hi = 0 for all q 2 diag(G). (6.3)

Su¢ ciency of (6.3) follows (6.2). To see the reverse implication, �x some
h 2 HGnHc and without loss of generality suppose that

P
t ht(!) > 0 for

some !. Let qT be a measure in �(
;GT ) such that qT (GT (!)) = 1. Since
h 2 HG, hqT ;

P
t hti is well-de�ned and strictly positive. Extend qT to a

vector q 2 diag(G) and note that hq; hi = hqT ;
P

t hti > 0, proving the
necessity of (6.3).

To complete the proof of the lemma, �x some q0 =2 diag(G). It su¢ ces to
�nd an act h0 2 HG \ Hc such that hq0; h0i 6= 0. Since diag(G) is a subspace
of �t2T ba(
;Gt) and any subspace is the intersection of the hyperplanes that
contain it, there exists an act h0 2 HG such that

hq0; h0i 6= 0 and hq; h0i = 0 for all q 2 diag(G).

By (6.3), the act h0 lies in HG \Hc, as desired.�

Lemma 9 For every closed set Q � �t2T�(
;Gt),

Q � diag(G) if and only if minq2Q hq; hi = 0 for all h 2 HG \Hc:

Proof: Su¢ ciency follows directly from Lemma 8. To see necessity, suppose
there exists some q0 2 Qndiag(G). By Lemma 8, there exists h0 2 HG \ Hc
such that hq0; h0i 6= 0. Since

h0 2 HG \Hc if and only if � h0 2 HG \Hc,

one can choose h0 such that minq2Q hq; h0i � hq0; h0i < 0. This establishes a
contradiction.�

De�ne the subset of subjectively certain acts:

H� := fh 2 Hc : h0 � h0(!) for all ! 2 
 and all h0 2 Hc \HF(h)g,

and let G� be the algebra on 
� T induced by H�.

Lemma 10 The algebra G� on 
� T is a regular �ltration on 
.
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Proof: First prove that for every h 2 Hc, the �ltration F(h) is the small-
est algebra on 
 � T induced by Hc \ HF(h). For every t < T , the act
(0�t;�(t+1);1
;�1
) 2 Hc \ HF(h) implying that the smallest algebra con-
tains the set 
� ftg for every t 2 T . Also,

h 2 Hc if and only if hT = �
P

�<T h� .

Conclude that for every h 2 Hc, �(hT ) � _��T�1�(h� ). But then

F(h)T = _��T�(h� ) = [_��T�1�(h� )] _ �(hT ) = _��T�1�(h� ) = F(h)T�1.

Conclude that F(h) is regular and for all events A 2 F(h)T and payo¤s
x 2M (in particular x 6= 0):

(0�(T�1);�T ; xA
c(�x); xA(�x)) 2 Hc \HF(h),

and, since F(h) is a �ltration, for all t < T and A 2 F(h)t,

(0�t;�(t+1); xA
c(�x); xA(�x)) 2 Hc \HF(h):

The above inclusions imply that F(h) is the smallest algebra induced by
Hc \HF(h).
Finally, �x h 2 H�, h0 2 Hc \ HF(h), and h00 2 Hc \ HF(h0). Since

F(h0) � F(h), h00 2 Hc \ HF(h). By the choice of h, the latter implies
h00 � h00(!) for all !. Conclude that h0 2 H�. But then

H� = [h2H� [Hc \HF(h)])
G� = _h2H�F(h).

Since the supremum of regular �ltrations is a regular �ltration, the lemma is
proved.�

Lemma 11 Q \ diag(G�) 6= ?.

Proof: Let Q0 = f(margG�t qt)t2T : (qt)t2T 2 Qg and de�ne the linear func-
tional

� : (qt)t>0 7�! (margG�t�1qt)t>0:
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Consider the following subdomains of acts

DT nfTg : = f(h0; :::; hT�1; x0) 2 HG�g,
DT nf0g : = f(x0; h0; :::; hT�1) : (h0; :::; hT�1; x0) 2 HG�g.

Under the obvious identi�cation, DT nfTg = DT nf0g. The restrictions of �
to DT nfTg and DT nf0g, respectively, are represented by the following utility
functions:

UDT nfTg = : min
q2projT nfTgQ0

P
t<T hqt; hti

UDT nf0g = : min
q2��projT nf0gQ0

P
t>0 hqt; hti

By Stationarity, UDT nfTg and UDT nf0g represent the same preference relation.
[10, Theorem 1] implies that

projT nfTgQ
0 = � � projT nf0gQ0 =: K

De�ne the correspondence

 := � � projT nf0g �
�
Q0 \ proj�1T nfTg

�
: K � K

Since Q0 is closed,  is the composition of a continuous function and an upper
hemicontinuous correspondence. Thus  is upper hemicontinuous. Since Q0

is convex,  is also convex-valued. By the Kakutani �xed point theorem [1,
Corollary 16.51],  has a �xed point q 2  (q). Equivalently, there exists a
point (q0; q1; :::; qT�1; qT ) 2 Q0 such that

�(q1; :::; qT ) = (q0; q1; :::; qT�1)

,
margG�t�1qt = qt�1;8t > 1.�

Lemma 12 Hc \ HG� = H� and G� is the largest regular �ltration G such
that Q � diag(G).

Proof: By construction, H� � Hc \ HG�. To see the reverse inclusion,
�x h 2 Hc \ HG� and let x � (�h). Certainty Independence implies that
1
2
x+ 1

2
h � 1

2
(�h) + 1

2
h. The two indi¤erences imply

x = � 1

T + 1
max
q2Q

P
t hqt; hti ,

x = � 1

T + 1
min
q2Q

P
t hqt; hti .
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Conclude that for every h 2 Hc \ HG�, hq; hi = hq0; hi for every q; q0 2 Q.
By Lemma 11, there exists a q 2 Q \ diag(G�). It follows that hq; hi = 0 for
every q 2 Q and so Hc \HG� � H�. Also by Lemma 9, Q � diag(G�).
If G is any �ltration such that GT = GT�1 and Q � diag(G), Lemma 9

implies that
Hc \HG � H� = Hc \HG�

Conclude that G � G�.�

6.1.1 Properties of the Filtration G�

Lemma 13 G� is connected, that is, G�t = G�T \ Ft for all t 2 T .

Proof: By Lemma 10, G� is a �ltration. Thus, G�t � G�T \ Ft for all t.
Conversely, �x an event A 2 G�T \ Ft for some t 2 T . Since G� is regular by
Lemma 10, G�T�1 = G�T 3 A for t = T � 1. For t < T � 1, it su¢ ces to show
that (0�t;�(t+1); xAy; (�x)A(�y)) � 0 for all x; y 2 M . By the regularity of
G�, (0�(T�1);�T ; xAy; (�x)A(�y)) 2 Hc \HG�, which implies that

(0�(T�1);�T ; xAy; (�x)A(�y)) � 0:

Applying Stationarity repeatedly, conclude that

(0�t;�(t+1); xAy; (�x)A(�y)) � 0:�

Lemma 14 G� is sequentially connected.

Proof: Fix an event A 2 �Gtn�Ft for some t < T . By way of contradiction,
suppose there exists a set ? 6= B 2 Gt+1 such that B ( A. First, suppose
B � C ( A for some C 2 �Ft. Since G is connected, conclude that B ( C.
Otherwise, B = C 2 Gt+1\�Ft implies that C 2 �Gt, contradicting the choice
of A. Now take the acts g = (0�t;�(t+1);1A;1B) and g0 = (0�t;�(t+1);1A;1C).
By construction, g 2 HG and g0 simpli�es g at C 2 �Ft. By Simpli�cation,
g0 2 HG and so C 2 Gt+1 \�Ft. Since G is connected, C 2 �Gt contradicting
C ( A 2 �Gt.
Conversely, suppose B \C 6= ? and B \Cc 6= ? for some C 2 �Ft. The

act g = (0�t;�(t+1);1A;1B) is G�-measurable. Moreover, the continuation of
g0 := (0�t;�(t+1);1A;1B[C) at the node C 2 �Ft simpli�es the continuation
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of g . By Simpli�cation, B[C 2 Gt+1. But B[C 2 Gt+1 and B 2 Gt+1 imply
CnB = B [ CnB 2 Gt+1 and, by construction, ? 6= CnB ( C ( A and C 2
�Ft. But then g

0 = (0�t;�(t+1);1A;1C) simpli�es g = (0�t;�(t+1);1A;1CnB) 2
HG at C 2 �Ft. As before, conclude that C 2 �Gt contradicting C ( A 2
�Gt.�

6.1.2 Construction of the Approximation Mapping �

Lemma 15 For all acts h; h0, payo¤s x and y and events A 2 [t�G�t ,

hAx � h0Ax if and only if hAy � h0Ay

Proof: Suppose hAx � h0Ax and note that (hAy)Ax = hAx and (h0Ay)Ax =
h0Ax. Conclude that (hAy)Ax � (h0Ay)Ax. For any A0 2 [t�G�t and A

0 6= A,

(hAy)A0x = (h0Ay)A0x = yA0x.

Conclude that
(hAy)A0x � (h0Ay)A0x.

Thus, (hAy)A0x � (h0Ay)A0x for all A0 2 [t�G�t . By Subjective Monotonic-
ity, hAy � h0Ay as desired.�

Fix some x0 and for every A 2 [t�G�t , de�ne the preference �A as

h �A h
0
if and only if hAx0 � h0Ax0.

By the above lemma, the �conditional�preference �A is independent of the
choice of x0. By construction, �A inherits convexity, monotonicity and
mixture-continuity. By Nonnullity, the preference is also nontrivial. By Cer-
tainty Independence and by Lemma 15 in turn,

hAx0 � h0Ax0 )
[�h+ (1� �)x]A[�x0 + (1� �)x] � [�h0 + (1� �)x]A[�x0 + (1� �)x])

[�h+ (1� �)x]Ax0 � [�h0 + (1� �)x]Ax0

Conclude that for all A 2 [t�G�t , �A is a multiple prior preference. Next,
recall that, for any (!; t) in 
�T , G�t (!) denotes the event in �G�t containing
!. By [10, Theorem 1], there exists a set C!;t � �(G�t (!);Ft) such that

h �G�t (!) h
0 if and only if minq2C!;t hq; hti � minq2C!;t hq; h0ti . (6.4)
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De�ne the mapping � : H ! H

(�h)t(!) = minq2C!;t hq; hti .

By construction,

�(hAx0) = �(h)Ax0 � hAx0 for all A 2 [t�G�t .

By Subjective Monotonicity, �(h) � h for all h 2 H. By Lemma 1, � is
an approximation mapping. To conclude the proof of the theorem, for all
h 2 H, de�ne

V (h) = U � �(h)
= minq2Q

P
t hqt;�(h)ti

= minq2Q
P

t hqT ;�(h)ti
= minq2Q hqT ;

P
t�(h)ti .

The third equality follows from Lemma 12. Finally set

C := margG�T � projfTgQ:

The claim that C is a subset of ��(
;G�T ) follows from the following property
of multiple-prior preferences.

Lemma 16 Let � be a multiple-prior preference on the space of FT -measurable
functions in M
, and let C be the respective set of priors. Let � be any par-
tition such that � � �FT and suppose that for all payo¤s x 2M :

hAx � h0Ax for all A 2 � implies h � h0

If A 2 � is nonnull, then p(A) > 0 for all p 2 C.

Proof: Suppose by way of contradiction that p(A) = 0 for some A 2 � and
p 2 C. Since A is nonnull, maxq2C q(A) > p(A) = 0. Fix some payo¤s y; y0

such that 1 > y > y0 > 0 and note that:

U(yA0) = minq2C [q(A)y] = yminq2C q(A) = 0 = U(y0A0); and

U(yA1) = minq2C [(y � 1)q(A) + 1] = 1� (1� y)maxq2C q(A) >

> 1� (1� y0)maxq2C q(A) = U(y0A1).

Conclude that yA0 � y0A0 and yA1 � y0A1 in contradiction of Lemma 15.�
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6.1.3 Uniqueness

Uniqueness of the set C follows from familiar arguments. To prove the unique-
ness of the G�-approximation mapping, take two such mappings �, b�. By
separability, for all A 2 �G�, h0 and x:b�(h0Ax) = b�((h0Ax)Ax)Ab�((h0Ax)Acx)

= b�(h0Ax)Ab�(x)
= b�(h0Ax)Ax

The last equality follows from the fact that b� must be identity on G�-
measurable acts. Since A 2 [t�G�t and �(h

0Ax), b�(h0Ax) 2 HG�, there
exist payo¤s y, by such that

�(h0Ax) = yAxb�(h0Ax) = byAx
Since b�(h0Ax) � �(h0Ax) and � is strictly increasing on HG�, it must be
the case that y = by. The proof is completed by induction on the number of
events A 2 �G� such that an act h0 2 H is nonconstant.

6.2 An Alternative Formulation

This section describes an alternative formulation of the static model.

De�nition 8 A preference relation � on H has a regular representation
(G;�; C) if it admits a utility function V of the form (2.3) where G is reg-
ular, the mapping � is identity on HG and C is a closed, convex subset of
��(
;GT ).

De�nition 9 A preference relation � on H has a largest representation
(G;�; C) if it admits a utility function V of the form (2.3) where G is se-
quentially connected, � is a G-approximation mapping, C is a closed, convex
subset of ��(
;GT ) and G is the largest �ltration for which a regular repre-
sentation exists.

Lemma 17 A preference � has a limited foresight representation if and only
if it has a largest representation. The two representations are identical.

37



Proof: If (G;�; C) is a regular representation for �, then Hc \ HG � H�
and so G � G�. Thus, the limited foresight model is su¢ cient for a largest
representation. Conversely, if a largest representation (G�;�; C) exists, then

G� = _Q�diag(G0)G 0 )
Hc \HG� = [fG0:Q�diag(G0)gHc \HG0

At the same time,
H� = [fG0:Q�diag(G0)gHc \HG0.

To see this note that, [fG0:Q�diag(G0)gHc \ HG0 � H�. If h 2 H�, then for all
h0 2 Hc \HF(h), h0 � 0. From Lemma 9, conclude that Q � diag(F(h)) and
so h 2 [G0:Q�diag(G0)Hc \ HG0. Thus H� = Hc \ HG� and so G� = F(H�) as
desired.�

6.3 Proof of Lemma 3

Suppose � has a representation (G; fCAg; C) such that CA has nonempty
interior in�(A;Ft) for all t 2 T and A 2 �Gt. LetQ be the set in�t�(
;Ft)
that represents � as in (6.1). It su¢ ces to show that for all �ltrations G 0
such that G 0T�1 = G 0T :

Q � diag(G 0) implies G 0 � G.
Equivalently,

8t < T; 8B =2 Gt; 9q 2 Q such that qt(B) 6= qt+1(B).

For all t 2 T and A 2 �Gt, de�ne �A as in (6.4). The family of preferences
f�Ag and � satisfy the conditions of [5, Theorem 3.2]. Conclude that:

Q = [�2Cf(qt) : qt =
Z
pAd� for some selection fpAgA2�Gt s.t. pA 2 CAg.

Fix t < T and B =2 Gt and any � 2 C. By the above decomposition of Q, it
su¢ ces to �nd two selections fpAgA2�Gt and fp

0
AgA2�Gt such that:Z

pA(B)d� 6=
Z
p0A(B)d�.

Since B =2 Gt, there exists A� 2 �Gt such that A� 6= B \ A� 6= ?. Since CA�
has nonempty interior, there exist pA� and p0A� such that pA�(B) 6= p0A�(B).
Choose any pA = p0A for all A 6= A� and A 2 �Gt to complete the proof of
the lemma.
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6.4 Proof of Theorem 4

Necessity is standard. To prove su¢ ciency, �rst show that fGt;!g is re�ning.
Fix t, ! such that Ft+1(!) =2 Gt;!. Since Gt;! is sequentially connected:

fB \ Ft+1(!) : B 2 Gt;!g = f?;Ft+1(!)g.

Conclude that Gt+1;! re�nes the trivial �ltration Gt;!\Ft+1(!). Alternatively,
suppose Ft+1(!) 2 Gt;! and take an e¤ectively certain act h such that h �t;!
0. One can assume that ht0(!0) = 0 whenever t0 < t or !0 =2 Ft+1(!). It
su¢ ces to show that h �t+1;! 0. Let x(!) be an outcome such that

(0�(t+1); x(!)) �t+1;! h,

and let f be a function on 
 that pays x(!) if !0 2 Ft+1(!) and zero else.
By Consequentialism,

(0�(t+1); f) �t+1;!0 h.
for every !0. By construction, (0�(t+1); f) is Gt;!-adapted, and hence, by
Weak Dynamic Consistency,

(0�(t+1); f) �t;! h �t;! 0.

By Lemma 16, this is possible if and only if x(!) = 0. But x(!) was chosen
such that

(0�(t+1); f) �t+1;! h
Conclude that h �t+1;! 0, as desired.

To prove that fCt;!g admits a consistent extension, construct the set C
recursively. For all ! and t � T �1, set bCt;! := Ct;!. Fix ! and t < T �1 and
suppose bCt+1;!0 has been de�ned for all !0. For any !0 such that Ft+1(!0) =2
Gt;!, �x some measure �!0 2 ��(Gt;!(!0);Ft+1) such that �!00 = �!0 for
all !00 2 Gt;!(!0). For each � 2 Ct;! de�ne the measure b� := R



b�!0dm in

��(Ft(!);Ft+1) where

m := margGt;!t+1� and
b�!0 := f �!0 if Ft+1(!0) =2 Gt;!�!0 if Ft+1(!0) 2 Gt;!

. (6.5)

In e¤ect, the constructed measures b� extend the individual�s one-step ahead
beliefs at t; ! from the foreseen events in Gt;!t+1 to all Ft+1-measurable subsets
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of Ft(!). The construction ensures that the set of extensions M t;! := fb� :
� 2 Ct;!g � ��(Ft(!);Ft+1) is closed and convex.

Next, let p denote a generic, Ft+1-measurable selection from !0 7�! bCt+1;!0
and de�ne

bCt;! = fZ



p!0db�(!0) : b� 2M t;! and p!0 2 bCt+1;!0 for all !0g. (6.6)

From [5, Theorem 3.2], conclude that bCt;! is a closed and convex subset of
��(Ft(!);FT ) and C := bC0 is fFtg-rectangular. In particular,

f�(� p Ft(!)) : � 2 Cg = bCt;! for all t and !.
To complete the proof, it remains to show that

margGt;! bCt;! := fmargGt;!� : � 2 bCt;!g = Ct;! for all t and !. (6.7)

The next lemmas show that both margGt;! bCt;! and Ct;! admit decompositions
similar to (6.6).

Lemma 18 For all t and !, margGt;! bCt;! admits the decomposition
margGt;! bCt;! = fZ




p!0d� : � 2 margGt;!t+1M
t;! and p!0 2 margGt;! bCt+1;!0g.

Proof: By (6.6), all measures in bCt;! are of the formZ



p!0db�;
where b� 2 M t;! and p is an Ft+1-measurable selection from the correspon-
dence !0 7�! bCt+1;!0. Since Gt;! is sequentially connected, margGt;!p is a
Gt;!t+1-measurable selection from !0 7�!margGt;! bCt+1;!0. Conclude that

margGt;!
Z



p!0db� = Z



margGt;!p!0 d
�
margGt;!t+1b�� .�

Lemma 19 For all t and !, Ct;! admits the decomposition

Ct;! = f
Z
p!0dm : m 2 margGt;!t+1C

t;! and p!0 2 margGt;!Ct+1;!
0
for all !0g.
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Proof: For each !0 2 Ft(!), let �at+1;!0 and �at;! denote the respective
restrictions of �t+1;!0 and �t;! to HGt;! . Since Gt+1;!

0
re�nes Gt;! for each

!0 2 Ft(!), the corresponding preference �at+1;!0 admits a representation

U t+1;!
0
(h) = min�2margGt;!Ct+1;!

0

Z �P
��t+1 �

��(t+1)h�

�
d�

Since Gt;! is sequentially connected, the mapping !0 7�! �at+1;!0 is G
t;!
t+1-

measurable. Thus, the collection of preferences

f�at;!;�at+1;!0 : !0 2 Ft(!)g

satis�es Consequentialism with respect to the �ltration Gt;!. By State In-
dependence and Lemma 15, the collection of preferences is also dynamically
consistent. The claim of the lemma follows from [5, Theorem 3.2].�

Complete the proof of (6.7) by induction. The claim holds trivially for
! and t � T � 1. Fix some ! and t < T � 1 and suppose the claim has
been established for t + 1. Applying Lemma 19, the induction hypothesis
and Lemma 18 in turn, conclude that

f�(� p Ft+1(!0)) : � 2 Ct;!g = margGt;!Ct+1;!
0

(6.8)

= margGt;! bCt+1;!0
= margGt;!f�(� p Ft+1(!0)) : � 2 bCt;!g

Also, by construction,

margGt;!t+1C
t;! = margGt;!t+1M

t;!. (6.9)

Properties (6.8) and (6.9) show that margGt;! bCt;! and Ct;! induce the same
sets of conditionals and one-step-ahead marginals. By Lemmas 18 and 19,
both margGt;! bCt;! and Ct;! are uniquely determined by the respective sets of
conditionals and marginals. Conclude that margGt;! bCt;! = Ct;!.
6.4.1 Uniqueness

Let C be an fFtg-rectangular subset of��(
;FT ) and for each t; !, let Gt;! be
a sequentially connected algebra such that Ft+1(!0) 2 Gt;! for all !0 2 Ft(!).
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Lemma 20 A measure � in ��(
;FT ) belongs to C if and only if

margGt;!�(� p Ft(!)) 2 fmargGt;!�0(� p Ft(!)) : �0 2 Cg for all t and !:

Proof: Su¢ ciency is immediate. To prove necessity, note the recursive
construction of the fFtg-rectangular set in the proof of Theorem 4. An
fFtg-rectangular subset contains the measure b� if and only if

b�(� p FT (!)) 2 f�0(� p FT (!)) : �0 2 Cg for ! 2 
, and
b�(� p Ft(!)) 2 fmargFt+1�0(� p Ft(!)) : �0 2 Cg for ! 2 
 and t < T .

By construction, the restriction of FT to FT (!) equals fFT (!);?g which
equals GT;! for each ! 2 
. By hypothesis, the restriction of Ft+1 to Ft(!)
is re�ned by Gt;! for each t and !. Conclude that � 2 C.�

To prove Theorem 5, let fCt;!g be an F-adapted process where Ct;! �
��(Ft(!);Gt;!). Say that the set C 0 in �(
;FT ) extends fCt;!g if

fmargGt;!�(� p Ft(!)) : � 2 C 0 s.t. �(Ft(!)) > 0g = Ct;!.

It is not di¢ cult to see that any extension C 0 must be a subset of ��(
;FT ).
By way of contradiction suppose that there exists a measure �0 2 C 0 such that
�0(Ft(!)) = 0 for some t and !. Since for all !0, �0(F0(!0)) = �0(
) = 1,
conclude that t > 0. Let t� be the largest t0 such that �0(Ft�(!)) > 0. The
time t� exists since �0(F0(!)) > 0. By the de�nition of t�, �0(� p Ft�(!)) is
well-de�ned and �0(Ft�+1(!) p Ft�(!)) = 0. The latter gives a contradiction,
since Ft�+1(!) 2 Gt

�;! and

margGt�;!�
0(� p Ft�(!)) 2 Ct

�;! � ��(Ft�(!);Gt
�;!).

From the recursive construction in the proof of Theorem 4, conclude that
there exists an fFtg-rectangular extension C in ��(
;FT ). Lemma 20 proves
that C is the unique fFtg-rectangular extension, whenever Ft+1(!0) 2 Gt;! for
all !0 2 Ft(!) and all t and !. Moreover, any other, possibly non-rectangular,
extension C 0 is a subset of C.
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6.5 Proof of Theorem 6

To prove Theorem 6, take an act h and suppose h(!) �0 h(!0) for all !; !0 2

. By Consequentialism,

h �T;! h(!) for all ! 2 
: (6.10)

Fix some ! and note that:

h� (!
0) = h� (!

00) for all !0; !00 2 FT�1(!) and � � T � 1.

By State Independence,

h(!0) �T;! h(!00) for all !0; !00 2 FT�1(!). (6.11)

But then (6.10) and (6.11) imply that for all !0 2 FT�1(!):

h �T;!0 h(!0) �T;!0 h(!).

By Dynamic Consistency, h �T�1;! h(!). Proceeding inductively, conclude
that h �0 h(!).

6.6 Sequentially Connected Filtrations

Say that a �ltration fGtg is connected if

Gt = Ft \ GT for all t 2 T .

Proposition 21 A sequentially connected �ltration fGtg is connected.

Let fGtg be sequentially connected. It is evident that Gt � GT \Ft for all
t 2 T . To prove the opposite inclusion, take an event A 2 GT \Ft. If A =2 Gt,
then there exists a set B 2 �Gt such that ? 6= B \ A 6= B. Then A 2 Ft
implies B =2 �Ft. Conclude that B 2 �Gtn�Ft and since fGtg is connected,
B 2 �GT . But then ? 6= B \ A 6= B contradicts the fact that A 2 GT .�

The following proposition shows that sequentially connected �ltrations
inherit the lattice properties of stopping-times.

Proposition 22 The class of sequentially connected �ltrations is a lattice.
It is lattice-isomorphic to the class of sequentially connected algebras.
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First, establish the following distributive law.

Lemma 23 If G and G 0 are sequentially connected algebras, then

�G\Ft _ �G0\Ft = �G_G0 ^ �Ft for all t 2 T .

Proof: For any partitions � and �0, � � �0 if and only if � = �0. Thus, it
su¢ ces to show that

�G\Ft _ �G0\Ft � �G_G0 ^ �Ft for all t 2 T :

Fix some t 2 T and an event A 2 �G\Ft _ �G0\Ft. By de�nition of the
supremum, A = B \ B0 for some sets B 2 �G\Ft and B0 2 �G0\Ft . Since G
is connected, �G\Ftn�Ft � �G\FT = �G. Equivalently,

�G\Ft � �G [ �Ft : (6.12)

An analogous argument holds for G 0. By (6.12), there are two cases to con-
sider:

If B 2 �G and B0 2 �G0, then

B \B0 2 (�G _ �G0) \ Ft = �G_G0 \ Ft � �G_G0 ^ �Ft.

If B 2 �Ft (or B0 2 �Ft), then B \ B0 2 �G\Ft _ �G0\Ft � �Ft implies
that B = B \B0. But then

B \B0 = B 2 �Ft \ G ��Ft \ (G _ G 0) � �Ft ^ �G_G0.�

By Lemma 23, it is enough to prove that the class of sequentially con-
nected algebras is a lattice. Take the supremum G _ G 0 of such algebras G
and G 0 and an event A 2 �(G_G0)\Ftn�Ft. By Lemma 23,

�(G_G0)\Ft = �G_G0 ^ �Ft
= �G\Ft _ �G0\Ft

Thus there exist sets B 2 �G\Ft and B0 2 �G0\Ft such that A = B \ B0. If
B 2 �Ft, then B0 2 Ft implies A = B \ B0 = B 2 �Ft contradicting the
choice of A =2 �Ft. A symmetric argument implies B0 2 �G0\Ftn�Ft. Since G
and G 0 are sequentially connected, B 2 �G\F� and B0 2 �G0\F� for all � � t.
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Conclude that A = B \B0 2 �G\F� _�G0\F� = �G_G0 ^�F� = �(G_G0)\F� for
all � � t.

To show that G ^ G 0 is sequentially connected, take A 2 �G\G0\Ftn�Ft.
Notice that

�G\G0\Ft = �(G\F)t^(G0\Ft) =

= �G\Ft ^ �G0\Ft.

But A 2 �G\Ft ^�G0\Ft if and only if for all B0 2 �G\Ft [�G0\Ft such that
B0 � A:

A = [fB0;B1;:::;Bkg [B2fB0;B1;:::;Bkg B,

where the union is taken over all sequences fB0; B1; :::; Bkg of subsets of A
such that consecutive elements intersect and belong alternatively to �G\Ft
and �G0\Ft.

Since A 2 (�G\Ft ^ �G0\Ft)n�Ft, there exists a set B0 2 (�G\Ft [
�G0\Ft)n�Ft such that B0 � A. Fix such a set B0 and consider a sequence
fB0; B1; :::; Bkg satisfying the conditions above. For i < k, each Bi inter-
sects two disjoint subsets of Ft and so Bi =2 �Ft. Moreover, if Bk 2 �Ft then
Bk \ Bk�1 6= ? implies that Bk � Bk�1. Conclude that A can be written
as the union over sequences fB0; B1; :::; Bkg in (�G\Ft [ �G0\Ft)n�Ft. Since
G and G 0 are sequentially connected, A can be written as the union over
sequences fB0; B1; :::; Bkg in �G\F� [ �G0\F� for all � � t. Conclude that A
must be a subset of some element in�G\F�^�G0\F� . But since �G\F�^�G0\F�
is �ner than �G\Ft ^ �G0\Ft and A 2 �G\Ft ^ �G0\Ft, it must be that A 2
�G\F� ^ �G0\F� for all � � t.�

Proposition 24 A stopping time g induces a sequentially connected algebra.

A stopping time is a function g : 
 ! T such that [g = t] 2 Ft for all
t 2 T . The stopping time g is induces the algebra G:

G := fA 2 FT : A \ [g = t] 2 Ft;8t 2 T g:

To see that G is sequentially connected, �rst prove that

fA 2 �Ft : A � [g = t]g � �G, 8t 2 T (6.13)
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Fix t 2 T and A 2 �Ft such that A � [g = t]. Since A \ [g = t] = A 2 Ft
and A \ [g = t0] = ? 2 Ft for all t0 6= t, the de�nition of G implies A 2 G. If
B ( A 2 �Ft, then B \ [g = t] = B =2 Ft and thus B =2 G. Conclude that
A 2 �G.
Next �x t < T and take A 2 �G\Ftn�Ft. If A \ [g � t] 6= ?, then there

exists A0 ( A such that A0 2 �Ft and A0 \ [g � t] 6= ?. But [g � t] =
[g < t]c 2 Ft and A0 2 �Ft imply that A0 � [g � t] and so A0 2 G. In turn,
A0 2 G\�Ft implies A0 2 �G\Ft contradicting the choice of A. Conclude that
A � [g < t].

Fix some t0 < t such that A \ [g = t0] 6= ?. Since [g = t0] 2 G \ F t and
A 2 �G\Ft, it must be the case that A � [g = t0]. This implies A 2 Ft0, for
otherwise, A \ [g = t0] = A =2 Ft0 contradicts A 2 G. For any A0 2 �Ft0 and
A0 � A � [g = t0], equation (6.13) implies that A0 2 �G and so A0 2 �G\Ft.
Since A 2 �G\Ft, it must be the case that A = A0 2 �G. But then A 2
�G \ Ft+1 � �G\Ft+1 as desired.�

The next example translates the Gabaix and Laibson [8] procedure for
simplifying decision trees in the setting of this paper and shows that it induces
a sequentially connected �ltration.

Example 7 (Satis�cing) "Start from the initial node and follow all branches
whose probability is greater than or equal to some threshold level �. Continue
in this way down the tree. If a branch has a probability less than �, consider
the node it leads to, but do not advance beyond that node."

Thus, let � be a measure on (
;FT ) and � 2 [0; 1] be a threshold level. For
each event A and algebra F , de�ne rF(A) to be the smallest F-measurable
superset of A. The collection of events fAtg is a satis�cing procedure if:

At = f�Ftg for all t � 1, and for all t > 1
At = fA 2 �Ft : rFt�1(A) 2 Gt�1 and �(rFt�1(A) p rFt�2(A)) � �g.

It is not di¢ cult to see that fAtg generates a sequentially connected �ltration.
In fact, the �ltration is induced by the stopping time:

[� � 1] = ?, and for all t > 1
[� = t] = [

�
A 2 �Ft : �(A p rFt�1(A)) < � and �(rFt�1(A) p rFt�2(A)) � �

	
.
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