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Abstract

It is well known that if bidders have independent private values and homo-
geneous entry costs a �rst- or second-price auction with a reserve price equal
to the seller�s value maximizes social surplus and seller revenue, and leaves
bidders with no surplus. We show that if entry costs are heterogeneous and
private information, then the revenue maximizing reserve price is above the
seller�s value, a positive admission fee (and a reserve price equal to the seller�s
value) generates more revenue, and an entry cap combined with an admission
fee generates even more revenue. In each case bidders capture informational
rents. Nevertheless, social surplus and seller revenue coincide asymptotically,
and are the same whether entry costs are homogeneous or heterogeneous, even
though the e¤ect of an increase in the number of bidders may di¤er. Our results
are framed in terms of screening values rather than reserve prices, and apply
to any standard auction.
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1 Introduction

A classic result of the auction literature is that in a standard auction with an ex-

ogenously �xed number of bidders who have independent private values, maximizing

seller revenue requires screening bidders; i.e., the rules of the revenue maximizing

auction are such that a bidder whose value is below the screening value will �nd

it unpro�table to bid. Moreover, the revenue maximizing screening value is above

the seller�s value and is independent of the number of bidders �see Myerson (1981)

and Riley and Samuelson (1981). In �rst- and second-price sealed-bid auctions, for

example, the screening value is just the reserve price. Hence the revenue maximizing

reserve price is above the seller�s value and is independent of the number of bidders.

In many instances, however, the number of bidders is endogenously determined

as the result of costly entry decisions. As noted by Milgrom (2004), �. . . auctions

for valuable yet highly specialized assets often fail because of insu¢ cient interest

by bidders . . . [since] buyers are naturally reluctant to begin an expensive, time-

consuming evaluation of an asset when they believe that they are unlikely to win at a

favorable price.�Indeed, McAfee and McMillan (1987) and Levin and Smith (1994)

have shown that endogenous entry has important implications in �rst- and second-

price sealed-bid auctions. Speci�cally, when all buyers have the same (homogeneous)

entry cost, a reserve price equal to the seller�s value is optimal both for the seller

and for society. Henceforth we use the term buyer to refer to an agent potentially

interested in buying the object, and the term bidder to refer to a buyer who has

entered the auction.

We study standard auctions with endogenous entry, but where buyers have het-

erogenous privately known entry costs. In the sale of a �rm, for example, buyers

may face di¤erent regulatory restrictions: some buyers may have to seek approval

by regulatory authorities while others may not. Hence di¤erent buyers may have

substantially di¤erent costs of discovering their value for the �rm. Another example

is Internet auctions, where a buyer�s cost of discovering her value is the opportunity

cost of her time, and it varies across buyers.

In our setting, like in McAfee and McMillan (1987) and Levin and Smith (1994),

buyers simultaneously choose whether to enter the auction. Each buyer who enters

the auction observes her value for the object and then bids. Our setting di¤ers in
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that each buyer�s entry cost is an independent draw from a common distribution,

and is privately observed prior to entry. Our theoretical analysis provides a richer

framework for empirical studies of auctions using data either from the �eld or from

experiments �see, e.g., Li and Zheng (2009), Reiley (2006).

Heterogeneity of entry costs leads to results substantially di¤erent from those ob-

tained when entry costs are homogenous. We show that while a screening value equal

to the seller�s value remains socially optimal, the revenue maximizing screening value

is above the seller�s value. (Thus, in �rst- and second-price sealed-bid auctions, for

example, the revenue maximizing reserve price is above the seller�s value.) Never-

theless, it is always below the revenue maximizing screening value when the number

of bidders is exogenously �xed. Moreover, the revenue maximizing screening value

depends on the number of buyers as well as on the distribution of values and entry

costs.

When entry costs are homogenous, the seller has no incentive to charge an ad-

mission fee or subsidy (i.e., a fee which a buyer must pay, in addition to her entry

cost, in order to learn her value).1 We show that when entry costs are heterogeneous,

if an admission fee is feasible, then the revenue maximizing screening value is, once

again, the seller�s value, and the revenue maximizing admission fee is positive. In

other words, if it is feasible to screen buyers by entry costs, then it is suboptimal to

screen bidders by values.

Paradoxically, although the seller always bene�ts, ceteris paribus, from an addi-

tional bidder in the auction, we show that it is in his interest to limit entry via a cap

on the number of entrants. The seller obtains more revenue with an entry cap and an

admission fee than he obtains with an admission fee and/or a screening value alone,

whether entry costs are homogeneous or heterogenous.2

Our next set of results concerns the comparative static and asymptotic properties

of equilibrium. For homogeneous entry costs, Levin and Smith (1994) show that

1In the literature, �entry fee�usually refers to a fee paid by the bidder to submit a bid when she

already knows her value. Such a fee is captured in our setting through its e¤ect on the screening

value. An admission fee is paid by buyers before learning their values, and does not a¤ect the result

of the auction for a given number of bidders.
2Assuming, when entry cost are homogeneous, that bidders enter according to the mixed strategy

entry equilibrium.
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seller revenue decreases with the number of buyers in an entry equilibrium in mixed

strategies. We describe simple examples that show that this result does not hold when

entry costs are heterogeneous: an increase in the number of buyers may either increase

or decrease seller revenue depending upon the distribution of values and entry costs.

As the number of buyers grows large, auctions with homogenous and heterogeneous

entry costs are closely related We show that when the screening value and admission

fee are both zero, then seller revenue is asymptotically the same when (i) buyers

have a homogenous entry cost c > 0, and (ii) when buyers have heterogenous entry

costs and the lower bound of entry costs is c = c. Hence heterogeneity of entry

costs does not matter asymptotically. Moreover, asymptotic seller revenue equals

the constrained maximum social surplus (i.e., the maximum social surplus that can

be obtained when all buyers enter independently and with the same probability).

Thus, seller revenue is asymptotically the same whether the screening value and the

admission fee are both set to zero or whether they are set to maximize seller revenue.

An entry cap, in contrast, remains advantageous for the seller even as the number

of buyers grows large. When entry costs are homogeneous, the seller captures the

entire unconstrained maximum social surplus by capping entry at the number of bid-

ders that maximizes social surplus and simultaneously setting an admission fee which

makes buyers indi¤erent between applying or not applying for entry. When entry

costs are heterogenous and the lower bound c of entry costs is positive, then the seller

asymptotically captures the unconstrained maximum social surplus by capping entry

at the number of bidders that would maximize surplus if all buyers had the same

entry cost c and employing an admission fee. When the lower bound of entry costs is

zero and bidders�values are distributed uniformly, there is asymptotically no advan-

tage to employing an entry cap: seller revenue is asymptotically the unconstrained

maximum social surplus without screening buyers by entry costs or by values, and

without capping the number of entrants.

In order to understand the intuition for our results, it is useful to review the

results and intuition when entry costs are homogeneous. Let us assume for simplicity

that the seller�s value for the object is zero. A key result in this setting is that in

a standard auction with a screening value of zero the contribution to social surplus
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of an additional bidder is exactly equal to the buyer�s utility to entering.3 Thus,

when entry costs are homogeneous, the interests of an entrant and of society are

aligned: a buyer enters only if her expected utility to entering is above her entry cost;

that is, only if her contribution to social surplus is positive. Hence the number of

entering buyers maximizes social surplus. If the auction is su¢ ciently competitive,

then in equilibrium each buyer is indi¤erent between entering or not. Therefore buyer

surplus is competed away and the seller captures the entire social surplus. Hence a

screening value equal to zero maximizes both seller revenue and social surplus.

When entry costs are heterogeneous a version of the key result described above

also holds: we show that in a standard auction with a screening value of zero the con-

tribution to social surplus of a marginal increase of the entry threshold is proportional

to the buyer�s utility to entering; that is, the interests of buyers and society are also

aligned when entry costs are heterogenous. Consequently, a standard auction with a

zero screening value maximizes social surplus whether entry costs are homogeneous

or heterogeneous. With heterogeneous entry costs, however, not all buyer surplus is

competed away by entry: whereas the surplus of a buyer with an entry cost equal to

the equilibrium threshold is exactly zero, the surplus of buyers with lower entry costs

(who also enter) is positive. Therefore buyers capture a positive share of the surplus.

And even though setting a positive screening value reduces social surplus (because it

reduces entry below the socially optimal level and also leads to ex-post ine¢ ciencies),

it increases the seller�s share of social surplus and, as we show, increases revenue.

If an admission fee is feasible, an even greater revenue can be obtained with a

positive admission fee and a screening value equal to the seller�s value (i.e., zero):

reducing the screening value to zero and introducing an admission fee that leaves

unchanged the utility to a buyer to entering the auction induces the same entry

by buyers without incurring the ex-post ine¢ ciencies of a positive screening value.

Thus, seller revenue increases since social surplus increases while total buyer surplus

is unchanged.

In a standard auction with a revenue maximizing screening value and/or admission

fee too many buyers may enter. When this occurs, the last buyers to enter reduce

3A version of this result is established in Engelbrecht-Wiggans (1993)�s Proposition 1, and is also

observed in both McAfee and McMillan (1987) and Levin and Smith (1994).
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social surplus as their entry costs exceed their social contributions. An entry cap that

excludes these buyers, ceteris paribus (i.e., holding entry decisions �xed), raises both

social surplus and total buyer surplus. Combining this entry cap with an increase in

the admission fee that leaves unchanged buyers�entry decisions raises social surplus,

reduces total buyer surplus, and hence raises seller revenue.

Related Literature

In our setting, buyers make entry decisions before they observe their values, and

entry costs (interpreted as valuation-discovery costs) are heterogeneous and private

information. Samuelson (1985) studies a procurement sealed-bid auction with entry

where buyers make entry decisions after observing their �values�(i.e., their procure-

ment costs), and entry costs (interpreted as bid-preparation costs) are homogenous.

Samuelson (1985) shows that if the reserve is equal to the bidder�s value, then equi-

librium is socially optimal. In this setting, Menezes and Monteiro (2000) study the

equilibria of �rst- and second-price sealed-bid auctions, and provide an interesting

characterization of the optimal auction. Tan and Yilankaya (2007) study second-

price auctions and provide conditions under which the entry equilibrium is unique

(and symmetric), and under which there are other (asymmetric) equilibria.

In Samuelson�s setting, both reserve prices and entry fees screen bidders by values,

and are thus interchangeable. In our model, by contrast, reserve prices (and/or entry

fees) screen bidders by values, while admission fees screen buyers by entry costs.

We show that when both instruments are available, maximizing seller revenue entails

screening buyers by entry costs (by setting a positive admission fee), but not by values

(i.e., the revenue maximizing screening value is the seller�s value).

Green and La¤ont (1984) study the existence of equilibrium in a model where, as

in our setting, both entry costs and values are private information, but they assume,

as in Samuelson (1985), that a buyer makes entry decisions having observed both her

entry cost and her value. Kaplan and Sela (2003) study auctions where entry costs

are private information, but bidders�values are commonly known. Lu (2007) provides

an interesting characterization of the revenue maximizing admission fees in second

price sealed-bid auctions with heterogenous entry costs. Pevnitskaya (2004) studies

endogenous entry in �rst-price sealed-bid auctions with heterogeneous risk attitudes.

The paper is organized as follows. In Section 2 we lay out the basic setting. Section
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3 reviews the results for homogenous entry costs. Section 4 presents our results

for heterogenous entry costs. Section 5 develops a numerical example comparing

screening values, admissions fees, and entry caps. Section 6 studies the e¤ect of

increasing the number of buyers. Section 7 concludes. Proofs are in the Appendix.

2 Preliminaries

Consider a market for a single object for which there are N risk-neutral buyers and

a risk-neutral seller. In this market the object is allocated using a standard auction

(i.e., an anonymous auction that allocates the object to the highest bidder) with a

screening value v 2 [0; �v]. Each buyer must decide whether to enter the auction

thereby incurring an entry cost. A buyer who enters the auction learns her value,

and becomes a bidder. Buyers�values V1; : : : ; VN are independently and identically

distributed on [0; �v] according to an increasing c.d.f. F with an increasing hazard

rate, and p.d.f. f . The seller�s value for the object is zero.

The screening value v is the minimum value for which bidding is worthwhile; i.e.,

the lowest bidder type that bids. The screening value captures everything about the

rules of a standard auction that is payo¤-relevant (e.g., the payment rule, the reserve

price, the entry fee, etc.). The impact on the entry game of any change in these rules

can be captured as a change of the screening value.

Auctions with a Fixed Number of bidders

By the Revenue Equivalence Theorem �Myerson (1981), Riley and Samuelson

(1981) � in an increasing symmetric equilibrium of a standard auction with n � 1

bidders, the revenue of the seller is4

�(v; n) = n

Z �v

v

(yf(y) + F (y)� 1)F n�1(y)dy;

the utility of a bidder is

u(v; n) =

Z �v

v

�Z y

v

F (x)n�1dx

�
f(y)dy;

4For brevity of exposition, throughout the paper we omit the term expected when referring to

expected seller revenue, expected social surplus, etc.
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and the social surplus is

s(v; n) =

Z �v

v

ydF n(y):

We note that �(v; n) is increasing in n; u(v; n) is decreasing in both v and n, and

s(v; n) is decreasing in v and increasing in n. Also, it is easy to show that

s(v; n) = �(v; n) + nu(v; n):

Denote by V(n) the highest order statistic of fV1; : : : ; Vng. Then

s(0; n) = E(V(n));

i.e., a standard auction with a screening value equal to zero realizes the maximum

surplus.

Proposition 1 below establishes that when the screening value is zero, the utility

of each bidder is equal to her contribution to social surplus. We provide a simple

proof of this result in the Appendix. Proposition 1 of Engelbrecht-Wiggans (1993)

establishes a version of this formula for second-price auctions.

Proposition 1. In a standard auction with a screening value of zero, the utility of

a bidder is her contribution to social surplus, i.e., u(0; 1) = s(0; 1) and u(0; n) =

s(0; n)� s(0; n� 1) for n > 1:

As will be seen later, this fact is key to understanding the intuition for the results

on entry with homogeneous entry costs.

The Entry Game

Assume that each buyer enters the auction with probability p. Then the number

of bidders follows a binomial distribution B(N; p). Write pNn (p) for the probability

that the number of bidders is n 2 f0; 1; : : : ; Ng. Also assume that the screening value
v 2 [0; �v] is independent of the number of bidders n. Then seller revenue is

�(v; p) =
NX
n=1

pNn (p)�(v; n);

the utility of a buyer to entering the auction is

U(v; p) =

N�1X
n=0

pN�1n (p)u(v; n+ 1);
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and the gross social surplus is

S(v; p) =
NX
n=1

pNn (p)s(v; n):

Since s(v; n) = �(v; n) + nu(v; n), then

S(v; p) = �(v; p) +NpU(v; p): (1)

It is easy to see that U(v; p) is decreasing in p: if p00 > p0, then B(N; p00) �rst order

stochastically dominates B(N; p0); and therefore since u(v; n) is decreasing in n; we

have U(v; p00) < U(v; p0). Also, since u(v; n) is decreasing in v; then U(v; p) is also

decreasing in v:

We study the symmetric equilibria of the entry game. In this game, the payo¤ to

a buyer who enters, when every other buyer enters with the same probability p, is

U(v; p) minus her entry costs.

Our assumption that the screening value is independent of the number of bidders

n is appropriate when either (i) the rules of the auction are such that the screening

value is the same for every n, or (ii) bidders do not observe the number of bidders

present in the auction so that their bidding strategies are independent of n.5 The

former holds in �rst, second, and kth price sealed-bid auctions, for example, where the

screening value equals the reserve price regardless of the number of bidders. In this

case whether bidders observe the number of entrants is irrelevant (i.e., their payo¤s in

the entry game are the same). In contrast, in an all-pay auction with a �xed reserve

price, the formulas above describe the payo¤s in the entry game only if bidders do

not observe the number of entrants.

3 Homogenous entry costs

In this section we derive existing results identifying the revenue maximizing screening

value when all buyers have the same �xed entry cost c > 0, and show that these results

5The Revenue Equivalence Theorem applies even when there is uncertainty about the number

of bidders in the auction, provided that bidders have symmetric expectations �see Krishna (2002),

Section 3.2.2.
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hold for any standard auction. We assume that u(0; N) < c < u(0; 1) to rule out

uninteresting equilibria in which either every buyer or no buyer enters.

If n buyers enter the auction, the maximum social surplus that can be realized is

E(V(n))� nc = s(0; n)� nc:

Since u(0; n) = s(0; n)� s(0; n� 1) by Proposition 1, then the contribution to social
surplus of the n-th buyer to enter is

s(0; n)� s(0; n� 1)� c = u(0; n)� c.

Since u(0; n) is decreasing in n; this contribution is decreasing in n.

Consider a standard auction with a zero screening value. In a pure strategy

equilibrium of the entry game, the n-th buyer enters if her payo¤ to entering, u(0; n);

is above her cost, c; and does not enter if it is below; i.e., a buyer enters if and only if

her entry raises social surplus. Therefore the number of entering buyers n� maximizes

social surplus. If we ignore that n� must be an integer, then buyers capture none of

the surplus (i.e., u(0; n�) � c = 0), and the seller captures the entire social surplus.

A positive screening value reduces the social surplus and, because seller revenue is at

most the social surplus, also reduces seller revenue. Hence the revenue maximizing

screening value is zero.6

The key insight above was that the private and social bene�t of entry coincide

in a standard auction with a screening value equal to zero. Levin and Smith (1994)

show that the same logic applies to symmetric entry equilibria in mixed strategies. If

each buyer enters with probability p, then the number of bidders follows a binomial

distribution B(N; p); and the maximum social surplus that can be achieved is

NX
n=1

pNn (p)E(V(n))�Npc = S(0; p)�Npc: (2)

A standard auction with a screening value equal to zero attains this maximum. Note

that this is a constrained maximum surplus; i.e., it is the maximum surplus when all

6Since the number of entrants is an integer, however, bidder surplus will typically be positive,

and may be non-negligible. We address this issue in Proposition 7.
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buyers enter with the same probability. Using Proposition 1 we can calculate

dS(0; p)

dp
= N

 
NX
n=1

pN�1n�1 (p)s(0; n)�
N�1X
n=1

pN�1n (p)s(0; n)

!

= N
N�1X
n=0

pN�1n (p)u(0; n+ 1)

= NU(0; p);

i.e., the marginal contribution to gross social surplus of an increase in the probability

of entry is proportional to the utility of an entering buyer. Since U is decreasing in

p; then
d2S(0; p)

dp2
= N

dU(0; p)

dp
< 0:

Hence the social surplus, S(0; p) � Npc, is a concave function of p whose maximum

on [0; 1] is attained at the solution to the equation

N(U(0; p)� c) = 0:

In the symmetric mixed strategy entry equilibrium, p�, buyers are indi¤erent

between entering or not, i.e., U(0; p�) � c = 0. Therefore the social surplus is max-

imized.7 Since the seller captures the entire social surplus, the revenue maximizing

screening value is zero.

These results are summarized in the proposition below.

Proposition MM-LS. (Homogeneous entry costs �McAfee and McMillan (1987),

Levin and Smith (1994).) In a standard auction with a screening value equal to zero,

if buyers follow a (symmetric mixed) pure strategy entry equilibrium, then the (con-

strained) maximum social surplus is realized and is captured by the seller. Hence

either a �rst- or a second-price sealed-bid auction with a reserve price equal to zero

maximizes seller revenue.
7The assumption u(0; N) < c < u(0; 1) implies that 1 < n� < N; and that the unique symmetric

entry equilibrium p� satis�es p� 2 (0; 1): The social surplus when bidders enter with probability p�

is less than when exactly n� bidders enter, since with positive probability either too many or too few

bidders enter the auction. Thus, in the mixed strategy equilibrium the social surplus is constrained

maximized.
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4 Heterogenous entry costs

In this section we study the general case where buyers have heterogenous entry costs.

Speci�cally, each buyer i has a privately known entry cost Zi. Buyers�entry costs

Z1; : : : ; ZN are independently and identically distributed according to a c.d.f. H with

support [c; �c]; where 0 < c < �c � 1: As in the homogenous entry cost case (i.e., the

case where H is degenerate), we assume that u(0; N) < �c and c < u(0; 1) to rule out

uninteresting equilibria. For simplicity, we assume also that H is increasing, satis�es

H(c) = 0, and has a p.d.f. h:

In this setting, an entry strategy for a buyer can be described by a threshold

t 2 [c; �c] indicating the maximum entry cost for which the buyer enters the auction;

that is, a buyer enters when her entry cost is less than t; and does not enter if

it is greater than t �whether a buyer enters when her entry cost is exactly t is

inconsequential.8 If all buyers employ the same threshold t, then the number of

bidders follows a binomial distribution B(N;H(t)).

Consider any standard auction with a screening value v 2 [0; �v] and an admission
fee (or subsidy) � 2 R which a buyer must pay, in addition to her entry cost, in order
to enter. When all buyers enter according to a common threshold t, then the payo¤

to a buyer with entry cost z who enters is U(v;H(t)) � z � �. A symmetric entry

equilibrium is a threshold t 2 [c; �c] such that for all z 2 [c; �c]: U(v;H(t)) > z + �

implies t > z; and U(v;H(t)) < z + � implies t < z; i.e., a buyer enters if her utility

to entering exceeds the sum of her entry cost z and the admission fee �, and does not

enter if it is below.

As we shall see, when entry costs are heterogeneous, an admission fee, if feasible,

is advantageous to the seller. We therefore introduce admission fees from the outset.

For each screening value v 2 [0; �v] and admission fee � 2 R, denote by t�(v; �) the
symmetric equilibrium threshold. Proposition 2 establishes that for every v and �

there is a unique symmetric entry equilibrium, i.e., t�(v; �) is a well de�ned function.9

8In general, entry decisions are described by a mapping from [c; �c] into [0; 1] indicating for each

entry cost the probability with which a bidder enters the auction. When H is atomless, however, in

equilibrium buyers follow a threshold strategy.
9Tan and Yilankaya (2006) obtain an analogous result in their framework.
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Proposition 2. For each screening value v 2 [0; �v] and admission fee � 2 R, there is
a unique symmetric entry equilibrium t�(v; �) 2 [c; �c]. The mapping t� is a continuous
function. When the equilibrium is interior, t�(v; �) solves

U(v;H(t)) = t+ �; (3)

and is decreasing in both v and �.

Given a common entry threshold t 2 [c; �c], the social surplus generated in a

standard auction with a screening value of v is

W (v; t) = S(v;H(t))�Nc(t); (4)

where

c(t) =

Z t

c

zdH(z)

is the expected entry cost incurred by each buyer. Write

W � = max
(v;t)2[0;!]�[c;�c]

W (v; t); (5)

for the constrained maximum social surplus. W � is a constrained maximum in the

sense that buyers enter independently according to a symmetric entry rule.

Recall that a standard auction in which the screening value and admission fee

are both equal to zero maximizes social surplus when entry costs are homogeneous.

Proposition 3 establishes that this result holds as well when entry costs are hetero-

geneous. In particular, the symmetric entry equilibrium threshold t�(0; 0) induces

socially optimal entry.

Proposition 3. A screening value and an admission fee both equal to zero maximize

social surplus, i.e., W (0; t�(0; 0)) = W �.

If the entry equilibrium is interior, then U(v;H(t�(v; �))) � � = t�(v; �). Hence

total buyer surplus is

N

Z t�(v;�)

c

[U(v;H(t�(v; �)))� �� z]dH(z) = N

Z t�(v;�)

c

[t�(v; �)� z]dH(z) > 0; (6)

i.e., buyers have information rents. Thus, the seller does not capture the entire social

surplus. By Proposition 2, t� is decreasing in both v and �, and hence total buyer

surplus decreases with both v and �. Proposition 4 summarizes these results.
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Proposition 4. In an interior entry equilibrium, total buyer surplus is positive and

decreasing in both the screening value and the admission fee, and seller revenue is

less than the social surplus.

In the rest of this section we study revenue maximizing screening values, admis-

sion fees, and entry caps. Seller revenue is the sum of revenue from the auction,

�(v;H(t�(v; �))), and revenue from admission fees, NH(t�(v; �))�. Using equation

(1) evaluated at p = H(t�(v; �)), the equilibrium condition (3), and equation (4)

above, seller revenue can be written as

�(v;H(t�(v; �))) +NH(t�(v; �))� = W (v; t�(v; �))�N

Z t�(v;�)

c

[t�(v; �)� z]dH(z):

(7)

This equation has a clear interpretation: seller revenue is simply the di¤erence be-

tween the social surplus (�revenue�) and total buyer surplus (�cost�).

Screening Values

We begin by studying revenue maximizing screening values when admission fees

are not feasible (i.e., assuming that � = 0). It is well known that if the number

of bidders is exogenously given, then the revenue maximizing screening value vF is

positive and is the solution to the equation

v =
1� F (v)

f(v)
;

independently of the number of bidders �see Myerson (1981) and Riley and Samuelson

(1981). Recall that when entry is endogenous and costs are homogeneous, the revenue

maximizing screening value is zero. Proposition 5 establishes that when entry costs

are heterogeneous, a revenue maximizing screening value is between these two values,

i.e., v� 2 (0; vF ); and optimally trades o¤ �revenue�and �cost�e¤ects.

Proposition 5. A revenue maximizing screening value v� exists, satis�es 0 < v� <

vF ; and is characterized by the equation

@W

@v
+
@W

@t

@t�

@v
= NH(t�(v; 0))

@t�

@v
: (8)

The intuition for why a revenue maximizing screening value is positive is as follows:

when the screening value is zero, a marginal increase in the screening value has a
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negative impact on both social surplus and total buyer surplus. Since social surplus

is maximized when the screening value is zero (Proposition 3), the impact on social

surplus is negligible. The impact on total buyer surplus, however, is non-negligible

(see Lemma 2). Hence seller revenue, which is social surplus less total buyer surplus,

increases.

A similar argument shows that a revenue maximizing screening value is below vF :

a marginal decrease in the screening value from vF has a negative (direct) impact on

revenue holding the entry threshold t�(vF ; 0) �xed, and a positive (indirect) impact

on revenue through increased entry. Since for a �xed entry threshold seller revenue

is maximized at vF , i.e., @�(v;p)
@v

jv=vF = 0, the �rst e¤ect is negligible. However, the
e¤ect on revenue of increasing the entry threshold is non-negligible (see Lemma 4).

Equation (8) shows the trade-o¤s facing the seller: changing the screening value

has an impact on both social surplus, a revenue e¤ect, and total buyer surplus, a cost

e¤ect. The revenue maximizing screening value balances these two e¤ects, equating

marginal revenue and marginal cost. The solution to equation (8) depends on all the

primitives: the distributions of values and entry costs (F and H), and the number

of buyers (N). In contrast, when all buyers have the same entry cost c, the revenue

maximizing screening value is zero independently of F , N , and c. And when entry is

exogenous, the revenue maximizing screening value depends on F but is independent

of N .

Admission Fees

Assume now that the seller may set an admission fee � as well as a screening value

v. While a buyer�s entry cost represents her own idiosyncratic cost of discovering her

value, the admission fee is an extra cost that the seller imposes on a buyer who

chooses to enter the auction. A buyer might, for example, need to view the item for

auction in order to discover her value, in which case the seller may charge the buyer

for making the item available.

Proposition 6 establishes that an admission fee enables the seller to obtain more

revenue than he obtains by choosing a screening value alone. Indeed, when an ad-

mission fee is feasible, then the revenue maximizing admission fee is positive and the

revenue maximizing screening value is zero; i.e., it is optimal to screen buyers by entry

costs, but it is suboptimal to screen bidders by values. Proposition 6 characterizes
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the revenue maximizing admission fee.

Proposition 6. If an admission fee is feasible, then the revenue maximizing screening

value is zero, i.e., if it is feasible to screen buyers by entry costs, then it is suboptimal

to screen bidders by values. Further, a revenue maximizing admission fee �� exists,

is positive, and is characterized by the equation

@W

@t

@t�

@�
= NH(t�(0; �))

@t�

@�
: (9)

Moreover, seller revenue is greater than when an admission fee is not feasible.

It is easy to see that the revenue maximizing screening value is zero when an

admission fee is feasible: if the screening value is positive, then the seller can reduce

the screening value to zero and at the same time raise the admission fee so that the

utility to a buyer to entering the auction is unchanged. This admission fee (combined

with a zero screening value) induces the same entry by buyers without incurring the

ex-post ine¢ ciencies of a positive screening value. Seller revenue must increase since

social surplus increases while total buyer surplus is unchanged.

Clearly, a negative admission fee is suboptimal since raising the fee to zero in-

creases social surplus (by Proposition 3) and decreases total buyer surplus (by Propo-

sition 4), thereby increasing seller revenue. An admission fee of zero is also subop-

timal: increasing the admission fee above zero reduces both social surplus and total

buyer surplus; the e¤ect on social surplus is negligible since @W (0; t�(0; 0))=@t = 0

(Proposition 3), while the e¤ect on total buyer surplus is not non-negligible since

NH(t�(0; 0))@t�=@� < 0; i.e., seller revenue increases with � near zero. (A rev-

enue maximizing admission fee balances these two e¤ects as equation (9) requires.)

Therefore a revenue maximizing admission fee is positive and induces less entry than

socially optimal.

Unlike a screening value, an admission fee only has an indirect e¤ect on the social

surplus since it a¤ects entry decisions, but does not alter the social surplus generated

in the auction taking as given the number of bidders.

Entry Caps

We examine now the consequences of introducing an entry cap �n < N ; i.e., a

cap on the number of bidders. In this new scenario, a buyer must decide whether
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to apply for entry. Applying for entry entails a commitment to enter the auction

and pay the admission fee if admitted. When �n or fewer buyers apply for entry,

then each applicant is admitted. When more than �n buyers apply, then applicants

are anonymously (i.e., symmetrically) rationed so that exactly �n are admitted; hence

every buyer who applies has the same probability of being admitted. Since the revenue

maximizing screening value is zero when an admission fee is feasible (Proposition 6),

we assume the seller employs an admission fee, but sets the screening value to zero.

When entry costs are homogeneous, an entry cap combined with an admission fee

allows the seller to capture the entire unconstrained maximum social surplus. Assume

that all buyers have the same entry cost c > 0. Recall that n� is the number buyers

that maximizes social surplus, i.e., n� is the largest integer such that u(0; n�)� c � 0.
In an auction with an entry cap �n = n� and an admission fee � = u(0; �n) � c the

payo¤ to a buyer who is admitted if n < �n buyers apply is

u(0; n)� c� � > u(0; �n)� c� � = 0;

and it is zero if �n or more buyers apply. Hence applying is a weakly dominant strategy.

Further, in equilibrium �n or more buyers apply, and in a symmetric equilibrium every

buyer applies. Therefore in equilibrium the number of bidders is �n, total buyer surplus

is zero, and the unconstrained maximum social surplus is realized and captured by

the seller. Moreover, varying the number of buyers N does not a¤ect either social

surplus or seller revenue, so long as N > n�.10 These results are summarized in

Proposition 7.

Proposition 7. Assume that all buyers have the same entry cost c > 0. Then an

entry cap �n = n�, and an admission fee � = u(0; �n) � c (and a screening value of

zero) maximizes seller revenue and social surplus. Moreover, the seller captures the

unconstrained maximum social surplus. An increase in the number of buyers N has

no e¤ect on either social surplus or seller revenue.

Thus, the entry cap �n = n� rules out the possibility that there are too many or too

few bidders, as occurs in the symmetric mixed strategy entry equilibrium identi�ed

10Without an entry cap, both social surplus and seller revenue decrease with N in the symmetric

mixed strategy entry equilibrium �see Levin and Smith (1994), Proposition 9.
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by Levin and Smith (1994), and the admission fee � = u(0; �n)�c eliminates the rents
that may be captured by buyers in the pure strategy equilibria identi�ed by McAfee

and McMillan (1987).

When entry costs are heterogenous, a buyer�s decision whether to apply for ad-

mission depends on her entry cost. When each buyer applies for admission with

probability p, then a buyer�s utility conditional on being admitted is

�U(p) =
�n�1X
n=0

pN�1n (p)

�(p)
u(0; n+ 1) +

N�1X
n=�n

pN�1n (p)

�(p)

�n

n+ 1
u(0; �n);

where

�(p) =
�n�1X
n=0

pN�1n (p) +
N�1X
n=�n

pN�1n (p)
�n

n+ 1

is the probability that a buyer who applies is admitted.11

A symmetric equilibrium is a threshold �t 2 [c; �c] such that for all z 2 [c; �c]:
�U(H(�t)) > z + � implies �t > z; and �U(H(�t)) < z + � implies �t < z; i.e., a buyer

applies for admission if her utility conditional on being admitted exceeds the sum of

her entry cost and the admission fee, and does not apply otherwise.

Denote by n�(c) the largest integer n such that u(0; n) � c � 0. Proposition 8

establishes that an entry cap raises seller revenue.

Proposition 8. An entry cap �n = n�(c) combined with a revenue maximizing ad-

mission fee and a zero screening value generates more revenue than any admission

fee and/or screening value alone.

The intuition for this result is as follows: suppose in the absence of an entry cap

the seller sets a revenue maximizing admission fee �� and screening value v = 0 (see

Proposition 6). Let t�(0; ��) denote the equilibrium entry threshold. If the seller

introduces an entry cap �n = n�(c), then a buyer whose entry cost is z and who is not

admitted to the auction (as a result of more than n > �n buyers applying) obtains a

payo¤ of zero and makes a social contribution of zero. Had she been admitted, her

contribution to social surplus, u(0; n)� z; would have been negative, since

11For n < �n, the ratio pN�1n (p)=�(p) is the probability a bidder assigns to the event that n of the

N � 1 other bidders are admitted when she herself is admitted.
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u(0; n)� z � u(0; �n+ 1)� c < 0:

Also, the buyer is better o¤as a result of being excluded since her entry cost z exceeds

her utility, u(0; n), if admitted to an auction with n > �n bidders. Hence, ceteris

paribus (i.e., if buyers apply to the auction according to the threshold t�(0; ��)), both

total buyer surplus and social surplus increase as a result of the entry cap.

Proposition 8 shows that if, in addition to the entry cap, the admission fee is raised

(from ��) until the equilibrium threshold for applying for entry equals t�(0; ��), then

total buyer surplus decreases below its level without the entry cap. Thus, the intro-

duction of the entry cap �n = n�(c); combined with an increase of the admission fee

that leaves the threshold t�(0; ��) unchanged, increases social surplus and decreases

total buyer surplus, thereby leading to an increase in seller revenue.

5 An Example

Assume that N = 2, and that values and entry costs are distributed uniformly with

�v = 1; c = 1=4 and �c = 1=2. We calculate the equilibrium outcomes for a standard

auction in four scenarios. In scenario (i) both the screening value and the admission

fee are zero. In scenario (ii) the screening value is set to maximize revenue assuming

that no admission fee is feasible. In scenario (iii) both the screening value and ad-

mission fee are set to maximize revenue. In scenario (iv) there is an entry cap and a

revenue maximizing screening value and admission fee.

By Proposition 2, in scenarios (i)-(iii) the equilibrium threshold t solves equation

(3), which in this example is

(1�H(t))u(v; 1) +H(t)u(v; 2) = t+ �;

where H(t) = 4t� 1, u(v; 1) = (1� v)2 =2 and u(v; 2) = (2v + 1) (1� v)2 =6. Solving

for t yields

t�(v; �) =
(5� 2v) (1� v)2 � 6�

8(1� v)3 + 6
:

Seller revenue is �(v;H(t�(v; �))) +NH(t�(v; �))�, which becomes

2(1�H(t�(v; �)))H(t�(v; �))�(v; 1) +H(t�(v; �))2�(v; 2) + 2H(t�(v; �))�;
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where �(v; 1) = v (1� v) and �(v; 2) = (1� v) (4v2 + v + 1) =3. Total buyer surplus

is N [H(t�(v; �))t�(v; �)� c(t�(v; �))], which becomes

2

 
H(t�(v; �))t�(v; �)�

Z t�(v;�)

1=4

4zdz

!
:

We use these formulae to calculate the equilibrium in each scenario.

In scenario (i) we have v = � = 0. In order to calculate the revenue maximizing

screening value of scenario (ii), we set � = 0 and solve d�(v;H(t�(v; 0)))=dv = 0

to obtain v� = 0:0972. In scenario (iii), by Proposition 6 the revenue maximizing

screening value is v = 0 and the revenue maximizing admission fee solves

d

d�
[�(0; H(t�(0; �))) +NH(t�(0; �))�] = 0;

which yields �� = 0:075. Applying the values of v and � for scenarios (i)-(iii) to the

formulae above, we calculate the equilibrium threshold, seller revenue, total buyer

surplus, and social surplus. The numerical results are given in Table 1 below.

Scenario (iv) requires a separate analysis. By Proposition 8 we set �n = n�(c) = 1

and v = 0.12 The equilibrium threshold �t for applying to the auction solves

u(0; 1) = �t+ �:

Solving for �t yields �t�(�) = 1
2
��. Since there is at most one bidder and the screening

value is zero, the auction generates no revenue. Thus seller revenue is � when at least

one buyer applies and is zero otherwise; i.e., seller revenue is [1� (1�H(�t�(�)))2]�.

The revenue maximizing admission fee is ��� = 0:1443.

Table 1 describes the equilibrium outcomes in scenarios (i) to (iv). The values

in parentheses in the last three columns are percentages of the baseline scenario (i)

values. In scenario (ii), where no admission fee is feasible, a revenue maximizing

screening value increases seller revenue by 18%, while total buyer surplus and social

surplus decrease by nearly 45% and 9%, respectively. If an admission fee is feasible

�scenario (iii) �then seller revenue increases by 22%, while total buyer surplus and

social surplus decrease by 51% and 9%, respectively. An entry cap together with a

revenue maximizing admission fee �scenario (iv) �increases seller revenue by 57%,

12Recall that n�(c) is the largest integer n such that u(0; n) � c. Since u(0; 1) = 1=2 > c = 1=4 >
u(0; 2) = 1=6, then n�(c) = 1.
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decreases total buyer surplus by 24%, and increases social surplus by 22%. Social

surplus exceeds the constrained maximum social surplus (i.e., the social surplus in

scenario (i)), because buyers no longer enter independently; in particular, if one

buyer is admitted to the auction then the other is not. Interestingly, introducing an

entry cap raises the expected number of bidders from 2H(t�(0; ��)) = :6 to [1� (1�
H(�t�(��

�
)))2] = :66.

Scenario (v; �)
Equilibrium

Threshold

Seller

Revenue

Total Buyer

Surplus

Social

Surplus

(i) (0; 0) :3571 :06122

(100:00)

:04592

(100:00)

:10714

(100:00)

(ii) (:0972; 0) :3295 :07261

(118:60)

:02529

(55:06)

:09790

(91:37)

(iii) (0; :0750) :3250 :07500

(122:50)

:02250

(49:00)

:09750

(91:00)

(iv) (0; :1443)

(�n = 1)

:3557 :09623

(157:16)

:03522

(76:70)

:13145

(122:68)

Table 1: Equilibrium Outcomes in Scenarios (i)-(iv).

6 Market Thickness

In this section we study the impact on seller revenue and social surplus of an increase

in the number of buyers N . Consider a standard auction with a screening value and

an admission fee both equal to zero, and assume that bidders�values are distributed

uniformly on [0; 1]. The thick continuous curve in Figure 1 below shows seller revenue

as a function of N when buyers have a homogenous entry cost of c = 1=4. Seller

revenue decreases with N . (Levin and Smith (1994), Proposition 9, show that this is

a general feature when entry costs are homogeneous.) The thin continuous curve in

Figure 1 shows seller revenue when entry costs are distributed uniformly on [1=4; 1=2].

Seller revenue increases with N . The two curves approach each other as N becomes

large and seem to converge to a common limit.
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Figure 1: Seller Revenue and the Number of Buyers.

That seller revenue increases with N when entry costs are heterogeneous is not a

general feature; e.g., seller revenue and social surplus decrease from N = 1 to N = 2

when entry costs are uniformly distributed on [:49; :5].13 The convergence of seller

revenue to a common limit observed in Figure 1, however, holds in general.

Proposition 9 establishes that asN grows large, a screening value and an admission

fee both equal to zero asymptotically generates the same seller revenue and social

surplus when all buyers have the same entry cost c > 0 as when the lower bound of

buyers�heterogeneous entry costs is c = c. Hence, despite the di¤erent comparative

static properties of equilibrium with homogeneous and heterogeneous entry costs, the

equilibrium outcomes are asymptotically the same.

For each integer N , write W �
N (Ŵ

�
N) for the constrained maximum social surplus

when buyers have heterogeneous (homogeneous) entry costs. Also denote by �0N (�̂
0
N)

seller revenue in a standard auction with a screening value and admission fee both

equal to zero when buyers have heterogeneous (homogeneous) entry costs.

Proposition 9. A screening value and an admission fee both equal to zero asymp-

totically generate the same seller revenue and social surplus whether buyers have

homogenous or heterogeneous entry costs, so long as c = c; i.e.,

lim
N!1

�0N = lim
N!1

W �
N = lim

N!1
�̂0N = lim

N!1
Ŵ �
N > 0:

Hence a screening value and an admission fee equal to zero asymptotically maximize

seller revenue when buyers have heterogeneous entry costs.

Proposition 9 has several implications: when entry cost are heterogeneous, seller

revenue is asymptotically invariant to changes in the distribution of entry costs that

preserve the lower bound of its support. Seller revenue and social surplus coincide

asymptotically, and hence total buyer surplus is asymptotically zero. Finally, seller

revenue is asymptotically the same whether the screening value and the admission

fee are both set equal to zero or whether they are set to maximize seller revenue.
13Introducing an additional buyer has two e¤ects: it worsens the entry coordination problem, as

in Levin and Smith (1994), but also favors a better entry cost selection. Which e¤ect dominates

depends on the distribution of entry costs.
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Proposition 10 establishes that an entry cap and admission fee allows the seller

to asymptotically capture the unconstrained maximum social surplus, s(0; �n) � �nc,
where �n = n� (c) is the socially optimal number of bidders when all buyers have the

lowest possible entry cost c. This is illustrated in Figure 1 where the thin dashed line

shows seller revenue when entry costs are heterogeneous and distributed uniformly

on [1=4; 1=2], and there is an entry cap of �n = 1 and an optimal admission fee. Seller

revenue asymptotically approaches 1=4, the unconstrained maximum social surplus.

The thick dashed shows seller revenue when buyers have a homogeneous entry cost of

c = 1=4, and there is an entry cap of �n = 1 and an optimal admission fee. Consistent

with Proposition 7, seller revenue is constant in N and equal to the unconstrained

maximum social surplus.

Proposition 10. An entry cap �n = n� (c), a revenue maximizing admission fee, and

a zero screening value allows the seller to asymptotically capture the unconstrained

maximum social surplus, s(0; �n)� �nc.

By Proposition 8, the introduction of the entry cap �n = n� (c) increases seller

revenue. Proposition 10 implies that the revenue advantage of an entry cap persists

asymptotically, i.e., s(0; �n) � �nc > limN!1�
0
N . To see why this holds, �rst observe

that for any �xed N we have s(0; �n) � �nc > Ŵ �
N and, since Ŵ �

N decreases with N

(by Levin and Smith (1994)), then s(0; �n)� �nc > limN!1 Ŵ
�
N . Hence s(0; �n)� �nc >

limN!1�
0
N by Proposition 9.

An interesting case not covered by propositions 9 and 10 is when the lower bound

of the support of entry costs is zero, i.e., c = 0. Proposition 11 establishes that if

values are uniformly distributed, then in a standard auction with a screening value

and an admission fee both equal to zero, seller revenue and social surplus are asymp-

totically equal to �v (the asymptotic maximum gross social surplus). An immediate

implication of this result is that the total entry costs incurred by buyers, as well as

total buyer surplus, are asymptotically zero. More signi�cantly, seller revenue is the

unconstrained maximum social surplus without screening buyers by entry costs or

bidders by values, and without capping the number of entrants.

Proposition 11. If c = 0 and values are distributed uniformly on [0; �v], then a

screening value and an admission fee both equal to zero asymptotically generate a
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seller revenue and social surplus equal to �v, i.e.,

lim
N!1

�0N = lim
N!1

W �
N = �v:

Hence a screening value and an admission fee equal to zero asymptotically maximize

seller revenue.

7 Conclusions

The results obtained when entry costs are homogeneous, namely that a standard

auction realizes the maximum social surplus, and that it is captured by the seller

without screening bidders by value, is not robust to the introduction of heterogeneity

in entry costs. In the generic case of heterogeneous entry costs, we rather �nd that

maximizing seller revenue entails screening bidders by values, or by entry costs if it is

feasible, or limiting entry via an entry cap. Moreover, maximizing seller revenue leads

to a socially suboptimal outcome because screening bidders by values or by entry costs

induces less entry than is socially optimal (and generates ex-post ine¢ ciencies when

screening bidders by value). As the number of buyers grows large, asymptotic seller

revenue depends only on the lower bound of entry costs c and is the same as when

entry costs are homogeneous and equal to c, i.e., asymptotically there is no advantage

to screen buyers by entry cost or values. However, the revenue advantage of an entry

cap persists asymptotically so long as the lower bound of entry costs is positive.

8 Appendix

Proof of Proposition 1: For n = 1 we have

u(0; 1) =

Z �v

0

yf(y)dy = E(V(1)) = s(0; 1):

For n > 1, by interchanging the order of integration we obtain

u(0; n) =

Z �v

0

�Z y

0

F (x)n�1dx

�
f(y)dy

=

Z �v

0

�Z �v

x

f(y)dy

�
F (x)n�1dx

=

Z �v

0

(1� F (x))F (x)n�1dx:
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Integrating by parts we getZ �v

0

F (x)ndx = xF n(x)j�v0 �
Z �v

0

nxF (x)n�1f(x)dx

= �v � E
�
V(n)

�
:

Hence

u(0; n) =

Z �v

0

F (x)n�1dx�
Z �v

0

F (x)ndx

=
�
�v � E

�
V(n�1)

��
�
�
�v � E

�
V(n)

��
= s(0; n)� s(0; n� 1): �

Proof of Proposition 2: Consider a standard auction with a screening value v 2
[0; �v] and an admission fee � 2 R: We show that there is the unique symmetric entry
equilibrium, t�(v; �).

Assume that u(v; 1) � c+ �. Since pN�10 (0) = 1 and pN�1n (0) = 0 for n > 0, then

U(v; 0) =
N�1X
n=0

pN�1n (0)u(v; n+ 1) = u(v; 1):

Since U is decreasing in p we have

U(v;H(t)) � U(v; 0) = u(v; 1) � c+ � � z + �

for all t; z 2 [c; �c]: Therefore in equilibrium no buyer enters, i.e., t�(v; �) = c is the

unique symmetric entry equilibrium.

Assume that u(v;N) � �c+ �. Since pN�1n (1) = 0 for n < N � 1 and pN�1N�1(1) = 1;

then

U(v; 1) =
N�1X
n=0

pN�1n (1)u(v; n+ 1) = u(v;N):

Since U is decreasing in p we have

U(v;H(t)) � U(v; 1) = u(v;N) � �c+ � � z + �

for all t; z 2 [c; �c]: Therefore in equilibrium every buyer enters, i.e., t�(v; �) = �c is the
unique symmetric entry equilibrium.

Assume that u(v; 1) > c+ � and u(v;N) < �c+ �. Then

U(v;H(c)) = U(v; 0) = u(v; 1) > c+ �;
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and

U(v;H(�c)) = U(v; 1) = u(v;N) < �c+ �:

Since U(v;H(�)) is continuous and decreasing on [c; �c] (because U(v; p) is decreas-
ing and continuous in p and H is continuous and increasing in t) there is a unique

t�(v; �) 2 (c; �c) solving the equation (3), U(v;H(t)) = t+�. Hence U(v;H(t�(v; �))) >

z + � implies t�(v; �) > z, and U(v;H(t�(v; �))) < z + � implies t�(v; �) < z, and

therefore t�(v; �) is a symmetric entry equilibrium. To see that t�(v; �) is the unique

symmetric entry equilibrium, note that for �t 2 [c; t�(v; �)) and z 2 (�t; t�(v; �)) we
have

U(v;H(�t)) > U(v;H(t�(v; �))) = t�(v; �) + � > z + �:

Hence �t is not a symmetric entry equilibrium. An analogous argument establishes

that no �t 2 (t�(v; �); �c] is a symmetric entry equilibrium either.

Since U(v; p) is continuous in v (because each u(�; n) for n 2 f1; :::; Ng is contin-
uous), then t�(v; �) is also continuous.

Finally, we show that t�(v; �) is decreasing in v and �. Di¤erentiating (3) implicitly

and noticing that U(v; p) is decreasing in both v and p yields

@t�

@�
= �

�
1� @U

@p
h(t)

��1
< 0;

and
@t�

@v
=
@U

@v

�
1� @U

@p
h(t)

��1
= �@U

@v

�
@t�

@�

�
< 0: �

The following lemma is key in proving Proposition 3.

Lemma 1. W � = W (0; tW ) where tW 2 (c; �c) uniquely solves U(0; H(t))� t = 0:

Proof: Since W (v; t) is decreasing in v; then W � = max(v;t)2[0;!]�[c;�c]W (v; t) =

maxt2[c;�c]W (0; t): We have

dW (0; t)

dt
=

NX
n=1

dpNn (H(t))

dt
s(0; n)�Nth(t):

Writing pNn for p
N
n (H(t)); we have

dpNn (H(t))

dt
= N(pN�1n�1 � pN�1n )h(t);
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for n � N � 1; and
dpNN(H(t))

dt
= NpN�1N�1h(t):

Substituting these expressions and using Proposition 1, we have

dW (0; t)

dt
= Nh(t)

 
pN�1N�1s(0; N) +

N�1X
n=1

(pN�1n�1 � pN�1n )s(0; n)� t

!

= Nh(t)

 
N�1X
n=0

pNn u(0; n+ 1)� t

!
= Nh(t) (U(0; H(t))� t) :

By assumption, we have U(0; H(c)) � c = U(0; 0) � c = u(0; 1) � c > 0; and

U(0; H(�c)) � �c = U(0; 1) � �c = u(0; N) � �c < 0. Since U is continuous and de-

creasing in p there is a unique tW 2 (c; �c) such that U(0; H(t)) � t = 0: Moreover,

since h(t) > 0 on [c; �c]; then dW (0; t)=dt > 0 for t 2 [c; tW ) and dW (0; t)=dt < 0 for
t 2 (tW ; �c]: Hence tW is the unique maximizer of W (0; t) on [c; �c]: �

Proof of Proposition 3: Proposition 3 follows directly from Lemma 1 by simply

noting that the equation U(0; H(t))� t = 0 is identical to equation (3) for v = � = 0;

i.e., tW = t�(0; 0): Hence W � = W (0; t�(0; 0)). �

Lemmas 2, 3 and 4 are useful in the proof of Proposition 5.

Lemma 2. d�(v;H(t�(v;0)))
dv

���
v=0

> 0:

Proof: For � = 0, di¤erentiating equation (7) with respect to v we have

d�(v;H(t�(v; 0)))

dv

����
v=0

=
dW (v; t�(v; 0))

dv

����
v=0

� NH(t�(v; 0))
dt�(v; 0)

dv

����
v=0

:

Since W (v; t�(v; 0)) is maximized at v = 0 by Proposition 3, we have

@W (0; t�(0; 0))

@t
= 0:

Taking the right derivative of W (v; t) with respect to v at v = 0 we get

@W (v; t)

@v

����
v=0

= 0:
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Then we have

dW (v; t�(v; 0))

dv

����
v=0

=
@W (0; t�(0; 0))

@v
+
@W (0; t�(0; 0))

@t

dt�

dv
= 0:

Since t�(0; 0) = tW by Proposition 3 and tW 2 (c; �c) by Lemma 1, then t�(v; 0) is
decreasing at v = 0, and therefore

d�(v;H(t�(v; 0)))

dv

����
v=0

= �NH(t�(0; 0))dt
�(0; 0)

dv
> 0: �

Recall that vF ; the solution to the equation v = (1�F (v))=f(v);maximizes �(�; n)
on [0; �v] �see Proposition 5 in Riley and Samuelson (1981).

Lemma 3. If t�(vF ; 0) > c, then �(vF ; H(t�(vF ; 0))) > �(v;H(t�(v; 0))) for v > vF .

Proof: For v > vF ; then t�(vF ; 0) > c implies t�(vF ; 0) � t�(v; 0) by Proposition

2. Hence the c.d.f. of the binomial B(N;H(t�(vF ; 0))) �rst order stochastically

dominates the c.d.f. of the binomial B(N;H(t�(v; 0))): Since � is strictly increasing

in n and �(vF ; n) > �(v; n) for v 2 (vF ; �v], we have

�(vF ; H(t�(vF ; 0))) =
NX
n=1

pNn (H(t
�(vF ; 0)))�(vF ; n)

>
NX
n=1

pNn (H(t
�(v; 0)))�(vF ; n)

>
NX
n=1

pNn (H(t
�(v; 0)))�(v; n)

= �(v;H(t�(v; 0))): �

Lemma 4. If t�(vF ; 0) 2 (c; �c); then d�(v;H(t�(v;0)))
dv

���
v=vF

< 0.

Proof: Assume that t�(vF ; 0) 2 (c; �c): We have

d�(v;H(t�(v; 0)))

dv

����
v=vF

=
NX
n=1

dpNn (H(t
�(v; 0)))

dv

����
v=vF

�(vF ; n)

+
NX
n=1

pNn (H(t
�(vF ; 0)))

d�(v; n)

dv

����
v=vF

:
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For all n � 1; since vF maximizes �(�; n) 2 [0; �v], we have

d�(v; n)

dv

����
v=vF

= 0:

Hence

d�(v;H(t�(v; 0)))

dv

����
v=vF

=

NX
n=1

dpNn (p)

dp

����
p=H(t�(vF ;0))

dH(t)

dt

����
t=t�(vF ;0)

dt�(v; 0)

dv

����
v=vF

�(vF ; n)

= h(t�(vF ; 0))
dt�(vF ; 0)

dv

NX
n=1

dpNn (p)

dp

����
p=H(t�(vF ;0))

�(vF ; n).

In this expression, h(t�(vF ; 0)) > 0 and dt�(vF ;0)
dv

< 0 (by Proposition 2). The term

NX
n=1

dpNn (p)

dp

����
p=H(t�(vF ;0))

�(vF ; n);

is positive: an increase in the binomial probability induces a new binomial distribution

whose c.d.f. �rst order stochastically dominates the c.d.f. of B(N;H(t�(vF ; 0)))

which, because � is increasing in n; increases seller revenue. Therefore

d�(v;H(t�(v; 0)))

dv

����
v=vF

< 0: �

Proof of Proposition 5: Since � = 0; then for v 2 [0; �v] seller revenue is�(v;H(t�(v; 0))),
which is continuous on [0; �v]: Hence an optimal screening value v� exists. We have

0 < v� by Lemma 2. We show that v < vF : Assume that t�(vF ; 0) = c; then for all

v 2 [vF ; �v] we have

�(v;H(t�(v; 0))) = 0 < �(0; H(t�(0; 0))) < �(v�; H(t�(v�; 0))):

Hence v� < vF : Assume that t�(vF ; 0) > c: Then v� � vF by Lemma 3. Since

t�(0; 0) = tW by Proposition 3 and tW 2 (c; �c) by Lemma 1, then t�(v; 0) is decreasing
at v = 0 by Proposition 2. Hence vF > 0 implies t�(vF ; 0) < t�(0; 0) < �c: Hence

t�(vF ; 0) 2 (c; �c), and Lemma 4 implies v� 6= vF . Hence v� < vF : Since v� 2 (0; �v);
then it solves equation (8). �

Proof of Proposition 6: Assume that (v�; ��) maximize seller revenue. We show

that v� = 0 and �� > 0:
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We begin by showing that t�(v�; ��) > c; i.e., there is entry. Since seller revenue

is positive for (v; �) = (0; 0); and seller revenue is zero when there is no entry, i.e.,

when the equilibrium threshold is c; then t�(v�; ��) > c:

We prove now that v� = 0: Assume that v� > 0; and de�ne

�̂ = U(0; H(t̂))� t̂;

where t̂ = t(v�; ��) > c: Then

U(0; H(t̂)) = t̂+ �̂:

Hence t�(0; �̂) = t̂ = t�(v�; ��), i.e., the equilibrium threshold is the same for (0; �̂)

and for (v�; ��), and therefore total buyer surplus is also the same. Social surplus

is greater for (0; �̂) than for (v�; ��) ; since for v = 0 the auction is ex-post e¢ cient,

whereas for v� > 0 it is not. Thus, seller revenue is greater for (0; �̂), contradicting

that (v�; ��) maximizes seller revenue.

We show that �� 6= 0: Since v� = 0; if �� = 0; then the maximum seller revenue is
�(0; H(t�(0; 0))): By Proposition 5, however, when no admission fee is feasible (i.e.,

when � = 0) the revenue maximizing screening value is positive; i.e., seller revenue

with a positive screening value is larger than �(0; H(t�(0; 0))). Hence �� 6= 0:
We show that �� � 0: Assume that � < 0: Since social surplus is uniquely max-

imized at (v; �) = (0; 0) by Proposition 3, raising the admission fee to zero, while

maintaining the screening value equal to zero, increases social surplus, and does not

increase buyer surplus (because the entry threshold is weakly decreasing in �). Hence

seller revenue increases; i.e., � < 0 does not maximize seller revenue.

Finally, the existence of an optimal admission fee �� is guaranteed since for v = 0

seller revenue, given in equation (7), is continuous on [0; ��], where �� = u(0; 1) � c;

and it is zero for � > �� as shown in the proof of Proposition 2 above. Moreover,

�� 2 (0; ��) and hence must satisfy equation (9). �

Proof of Proposition 8: Consider a standard auction with a screening value equal

to zero, an admission fee �; and an entry cap �n � 1. We �rst show that the entry

game has a unique symmetric equilibrium threshold. For z; t 2 [c; �c] de�ne

'(�; z; t) := �(H(t))
�
�U(H(t))� (z + �)

�
;
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i.e.,

'(�; z; t) =

�n�1X
n=0

pN�1n (H(t)) (u(0; n+ 1)� z � �)

+

N�1X
n=�n

pN�1n (H(t))
�n

n+ 1
(u(0; �n)� z � �)

=
N�1X
n=0

pN�1n (H(t))�u(�; z; n+ 1);

where

�u(�; z; n) =

(
u(0; n)� z � � if n � �n
�n
n+1

(u(0; �n)� z � �) if n > �n:

For each (�; z) 2 R � [c; �c], we have that �u is decreasing in n. Thus, '(�; z; t) is
decreasing in t because for t0 > t, B(N �1; H(t0)) �rst order stochastically dominates
B(N � 1; H(t)). Also for z; z0 2 [c; �c] we have

'(�; z0; t)� '(�; z; t) = ��(H(t))(z0 � z):

De�ne  (�; t) := '(�; t; t). We show that  is decreasing in t. Let t0 > t: Then

 (�; t0)�  (�; t) = '(�; t0; t0)� '(�; t; t)

= '(�; t; t0)� '(�; t; t) + '(�; t0; t0)� '(�; t; t0)

= '(�; t; t0)� '(�; t; t)� �(H(t0))(t0 � t) < 0:

Since � is decreasing in p and �(H(�c)) = �(1) = �n=N > 0; we have �(H(t)) > 0

for all t 2 [c; �c]: Let t 2 [c; �c]. Then for t0; z 2 [t; �c] we have

 (�; t) = '(�; t; t)

� '(�; t; t0)

= �(H(t0))
�
�U(H(t0))� (t+ �)

�
� �(H(t0))

�
�U(H(t0))� (z + �)

�
:

If  (�; c) < 0; then �U(H(t0))� (z + �) < 0 for all t0; z 2 [c; �c]; and therefore �t�(�) = c

is the unique equilibrium. Likewise, if  (�; �c) > 0; then �t�(�) = �c is the unique

equilibrium.
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Finally, if  (�; c) > 0 >  (�; �c); since  (�; t) is decreasing in t, then there is a

unique �t 2 (c; �c) such that  (�; �t) = 0; hence �(H(�t)) > 0 implies �U(H(�t)) = �t + �:

Moreover, �U(H(�t)) < z + � for all z 2 (�t; �c] and �U(H(�t)) > z + � for all z 2 [c; �t):
Therefore �t is an equilibrium. Let t 2 [c; �t):We have  (�; t) > 0, i.e., �U(H(t)) > t+�:

Hence for z = t + 1
2

�
�U(H(t))� t� �

�
; we have �U(H(t)) > z + � and z > t; and

therefore t is not an equilibrium. Likewise, no t 2 (�t; �c] is an equilibrium either.

Hence �t�(�) = �t is the unique equilibrium.

We establish Proposition 8 by showing that a standard auction with an entry cap

�n = n�(c); a screening value of zero, and the admission fee

�� = �� + �U(H(t�(0; ��)))� U(0; H(t�(0; ��)));

generates more seller revenue than the auction with no entry cap, and a revenue

maximizing admission fee �� and screening value v = 0. This is established by showing

that total buyer surplus in the auction with entry cap �n = n�(c) and admission fee ��;

denoted by �B, is less than total buyer surplus in the auction with no entry cap and

admission fee ��, denoted by B, whereas social surplus in the former, denoted by �W ,

is greater than in the latter; i.e., �W > W (0; t�(0; ��)). We have

 (��; t�(0; ��)) = �(H(t�(0; ��)))
�
�U(H(t�(0; ��)))� ��� t�(0; ��)

�
= �(H(t�(0; ��))) (U(0; H(t�(0; ��)))� �� � t�(0; ��))

= 0:

Hence t�(0; ��) = �t�(��); i.e., the equilibrium threshold is the same in the auction with

no entry cap and admission fee �� as in the auction with entry cap �n and admission

fee ��: Write �t = t�(0; ��) = �t�(��):

We show that �B < B: In the auction with entry cap �n = n�(c) and admission

fee �� the (ex-ante) surplus of a bidder whose entry cost is z < �t is equal to the

probability of being admitted to the auction, �(H(�t)); times her payo¤ conditional
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on being admitted, �U(H(�t))� ��� z: We have

�B = N

Z �t

c

�(H(�t))
�
�U(H(�t))� ��� z

�
dH(z)

< N

Z �t

c

�
�U(H(�t))� ��� z

�
dH(z)

= N

Z �t

c

(U(0; H(�t))� �� � z)dH(z)

= B;

where we use the equation �U(H(�t)) � �� = U(0; H(�t)) � ��, and where the inquality

holds since �(H(�t)) < �(H(c)) = �(0) = 1.

Finally, we show that �W > W (0; �t): By Proposition 1 we have

s(0; n) =
nX
k=1

u(0; k):

Since u(0; n)� E[zjz � �t] � u(0; �n+ 1)� c < 0 for n � �n+ 1; we have

�W =
�nX
n=1

pNn (H(�t)) (s(0; n)� nE[zjz � �t]) +
NX

n=�n+1

pNn (H(�t)) (s(0; �n)� �nE[zjz � �t])

=
�nX
n=1

pNn (H(�t)) (s(0; n)� nE[zjz � �t]) +
NX

n=�n+1

pNn (H(�t))
�nX
k=1

(u(0; k)� E[zjz � �t])

>
�nX
n=1

pNn (H(�t)) (s(0; n)� nE[zjz � �t])) +
NX

n=�n+1

pNn (H(�t))
nX
k=1

(u(0; k)� E[zjz � �t])

=
NX
n=1

pNn (H(�t))(s(0; n)� n
c(�t)

H(�t)
)

=

NX
n=1

pNn (H(�t))s(0; n)�Nc(�t)

= W (0; �t);

since the sum immediately after the inequality includes the negative terms u(0; k)�
E[zjz � �t] for k > �n. �

Proof of Proposition 9: Assume c = c > 0. By Proposition 9 in Levin and Smith

(1994) the sequence fŴ �
Ng � [0; �v] is decreasing. Hence it has a limit. Moreover,
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since �̂0N = Ŵ �
N for each N; we have

limN!1 �̂
0
N = limN!1 Ŵ

�
N :

For each N we use the notation �N ; UN ; SN ; t�N ; WN ; and to refer to the functions

�; U; S; t�; W de�ned in sections 2 and 4 for �xed N . Also we write p�N for the

equilibrium entry probability when entry costs are homogeneous, and the screening

value and admission fee are both equal to zero.

By Lemma 1 t̂ 2 (c; �c), and by Proposition 3 t�N(0; 0) = t̂. Hence E[zjz �
t�N(0; 0)] > c = c: Again by Proposition 3, W �

N = WN(0; t
�
N(0; 0)): We have

Ŵ �
N = max

p2[0;1]
SN(0; p)�Npc

� SN(0; H(t
�
N(0; 0)))�NH(t�N(0; 0))c

> SN(0; H(t
�
N(0; 0)))�NH(t�N(0; 0))E(z j z � t�N(0; 0))

= W �
N ;

i.e., for each N , the constrained maximum social surplus is greater when entry costs

are homogeneous than when they are heterogeneous.

We show

lim
N!1

W �
N = lim

N!1
Ŵ �
N :

For each N , let t̂N 2 [c; �c] be such that H(t̂N) = p�N : Then

WN(0; t̂N) = SN(0; p
�
N)�Np�NE(z j z � t̂N):

Since Ŵ �
N � 0 and S(0; p�N) � �v; then 0 � Np�N � �v=c for each N; and hence

limN!1 p
�
N = limN!1H(t̂N) = 0. Therefore limN!1 t̂N = c = limN!1E(z j z �

t̂N): Since

0 < Ŵ �
N �WN(0; t̂N) = Np�N(E(z j z � t̂N)� c);

and fNp�Ng is a bounded sequence, then

lim
N!1

(Ŵ �
N �WN(0; t̂N)) = 0;

and therefore

lim
N!1

WN(0; t̂N) = lim
N!1

Ŵ �
N � lim

N!1
(Ŵ �

N �WN(0; t̂N)) = lim
N!1

Ŵ �
N :
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By Proposition 3 and the inequality above, we have

WN(0; t̂N) � W �
N < Ŵ �

N

for all N: Hence

lim
N!1

W �
N = lim

N!1
Ŵ �
N :

Next we show that limN!1�
0
N = limN!1W

�
N : Since c = c; we have

UN(0; H(t
�
N(0; 0))) = t�N(0; 0) � c = UN(0; p

�
N):

Hence 0 � H(t�N(0; 0)) � p�N for allN: Since limN!1 p
�
N = 0 then limN!1H(t

�
N(0; 0)) =

0 and

lim
N!1

t�N(0; 0) = lim
N!1

E(z j z � t�N(0; 0)) = c:

Further, since 0 � Np�N � �v=c (as shown above), then 0 � NH(t�N(0; 0)) � Np�N �
�v=c; i.e., the sequence fNH(t�N(0; 0))g is bounded. Hence the asymptotic total buyer
surplus is

limN!1NH(t
�
N(0; 0))[t

�
N(0; 0)� E(z j z � t�N(0; 0))] = 0:

Thus the asymptotic seller revenue is limN!1�
0
N = limN!1W

�
N : �

Proof of Proposition 10: For each N we denote by �UN ; �N ; and �t�N the functions
�U; �; and �t� de�ned in Section 4 for an auction with an entry cap �n = n�(c) and

�xed N . Let " > 0 arbitrary, and let the admission fee be �� = u(0; �n) � c � "
2�n
: We

show that for N su¢ ciently large seller revenue is greater than s(0; �n)� �nc�", which
establishes Proposition 10. We have

�UN(H(�t
�
N)) =

�n�1X
n=0

pN�1n (H(�t�N))

�N(H(�t�N))
u(0; n+ 1) +

N�1X
n=�n

pN�1n (H(�t�N))

�N(H(�t�N))

�n

n+ 1
u(0; �n)

�
�n�1X
n=0

pN�1n (H(�t�N))

�N(H(�t�N))
u(0; �n) +

N�1X
n=�n

pN�1n (H(�t�N))

�N(H(�t�N))

�n

n+ 1
u(0; �n)

= u(0; �n);

where the inequality follows since u(0; n) is decreasing in n: Hence for z 2 [c; c+ "
2�n
)

we have
�UN(H(�t

�
N))� z � �� � u(0; �n)� z � �� > 0;
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i.e., in equilibrium a buyer whose entry cost is z 2 [c; c + "
2�n
) enters. Therefore

�t�N � c+ "
2�n
and H(�t�N) � H(c+ "

2�n
) > 0.

The equilibrium probability of at least �n applicants is
PN

n=�n p
N
n (H(�t

�
N)). Since

NX
n=�n

pNn (H(c+
"

2�n
)) �

NX
n=�n

pNn (H(�t
�
N))

for each N , and limN!1
PN

n=�n p
N
n (H(c+

"
2�n
)) = 1, then

lim
N!1

NX
n=�n

pNn (H(�t
�
N)) = 1;

and

lim
N!1

�n�1X
n=0

pN�1n (H(�t�N)) = 0:

Social surplus is

�W �
N =

�n�1X
n=0

pNn (H(�t
�
N))[s(0; n)� n

c(�t�N)

H(�t�N)
] + [s(0; �n)� �n c(

�t�N)

H(�t�N)
]
NX
n=�n

pNn (H(�t
�
N)):

For each N; we can calculate total buyer surplus, �BN ; as

�BN =
�n�1X
n=1

pNn (H(�t
�
N))n[u(0; n)�

c(�t�N)

H(�t�N)
� �]

+�n[u(0; �n)� c(�t�N)

H(�t�N)
� �]

NX
n=�n

pNn (H(�t
�
N)):

Hence seller revenue is

�W �
N � �BN =

�n�1X
n=0

pNn (H(�t
�
N))

�
s(0; n)� n

�
u(0; n)� ��

��
+
�
s(0; �n)� �n

�
u(0; �n)� ��

�� NX
n=�n

pNn (H(�t
�
N))

= s(0; �n)� �nc� "

2
� AN ;

where

AN =

�n�1X
n=0

pNn (H(�t
�
N))

��
s(0; �n)� �n

�
u(0; �n)� ��

��
�
�
s(0; n)� n

�
u(0; n)� ��

��	
:
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Let �N be su¢ ciently large that AN < "=2 for N > �N: Then for N > �N we have

�W �
N � �BN � s(0; �n)� �nc� "

2
� "

2
= s(0; �n)� �nc� ": �

Proof of Proposition 11: Assume without loss of generality that �v = 1: We �rst

establish that limN!1W
�
N = 1 by showing that for every " > 0 there is �N su¢ ciently

large that W �
N > 1� " for all N � �N .

Fix " > 0: Let � be such that 1� 1
�
(1� e��) > 1� ", i.e., 1

�
(1� e��) < ". Such

a � exists since lim�!1
1
�
(1 � e��) = 0. For each N > �; let tN 2 [0; �c] be such

that H(tN) = �
N
. Note tN exists and is unique since H is continuous and increasing.

Moreover, since H(0) = 0 and H is continuous; then limN!1 tN = 0.

Since values are uniformly distributed, then s(0; n) = n=(n+ 1). We have

WN(0; tN) =
NX
n=0

pNn (H(tN))
n

n+ 1
�N

Z tN

0

zdH(z):

Since NH(tN) = � for all N and limN!1 tN = 0; we have

lim
N!1

N

Z tN

0

zdH(z) = lim
N!1

NH(tN)

Z tN

0

z

H(tN)
dH(z)

= � lim
N!1

Z tN

0

z

H(tN)
dH(z)

= 0:

Since the limit of a binomial distribution as N goes to in�nity, holding NH(tN) = �

�xed, is the Poisson distribution, we have

lim
N!1

NX
n=0

pNn (H(tN))
n

n+ 1
=

1X
n=0

e���n

n!

n

n+ 1

=

1X
n=0

e���n

n!
(1� 1

n+ 1
)

= 1� 1

�

1X
n=0

e���n+1

n!

1

n+ 1
:

Letting k = n+ 1, i.e., n = k � 1 we have

1� 1

�

1X
n=0

e���n+1

n!

1

n+ 1
= 1� 1

�
(�e�� +

1X
k=0

e���k

k!
) = 1� 1

�
(�e�� + 1):
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Hence

lim
N!1

WN(0; tN) = 1�
1

�
(�e�� + 1):

Let � such that 0 < � < " � 1
�
(1 � e��) and �N be su¢ ciently large that for all

N > �N

WN(0; tN) � 1�
1

�
(1� e��)� � > 1� ":

By the de�nition of W �
N we have

W �
N � WN(0; tN) > 1� "

for all N > �N . Hence limN!1W
�
N = 1.

It remains to be shown that total buyer surplus is asymptotically zero. By Propo-

sition 3 we have

W �
N = WN(0; (t

�
N(0; 0))) =

NX
n=0

pNn (H(t
�
N(0; 0)))

n

n+ 1
�N

Z t�N (0;0)

0

zdH(z):

Since 0 <
PN

n=0 p
N
n (H(t

�
N(0; 0)))

n
n+1

� 1 and N
R t�N (0;0)
0

zdH(z) > 0 for all N; then

limN!1W
�
N = 1 implies

lim
N!1

NX
n=0

pNn (H(t
�
N(0; 0)))

n

n+ 1
= 1:

Total buyer surplus satis�es

0 � N

Z t�N (0;0)

0

(UN(0; t
�(0; 0))� z)dH(z) < NH(t�N(0; 0))UN(0; t

�(0; 0)):

Since values are distributed uniformly on [0; 1], then u(0; n) = 1
n(n+1)

and

NH(t�N(0; 0))UN(0; t
�
N(0; 0))) = NH(t�N(0; 0))

N�1X
n=0

pN�1n (H(t�N(0; 0)))u(0; n+ 1)

=

NX
n=1

pNn (H(t
�
N(0; 0)))

1

n+ 1

<
NX
n=0

pNn (H(t
�
N(0; 0)))

1

n+ 1
:
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Using that n
n+1

= 1� 1
n+1
, we can write

lim
N!1

NX
n=0

pNn (H(t
�
N(0; 0)))

n

n+ 1
= lim

N!1

NX
n=0

pNn (H(t
�
N(0; 0)))

�
1� 1

n+ 1

�

= 1� lim
N!1

NX
n=0

pNn (H(t
�
N(0; 0)))

1

n+ 1
;

provided that this last limit exists. Since
PN

n=0 p
N
n (H(t

�
N(0; 0)))

1
n+1

2 [0; 1] for each
N , and every convergent subsequence has a limit of zero, then the sequence itself has

a limit of zero, i.e.,

lim
N!1

NX
n=0

pNn (H(t
�
N(0; 0)))

1

n+ 1
= 0:

Hence

lim
N!1

NH(t�N(0; 0))t
�
N(0; 0) = 0:

Therefore total buyer surplus is asymptotically zero, and by (7) seller revenue is

asymptotically the entire social surplus, i.e., limN!1�N(0; t
�
N(0; 0))) = 1. �
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