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Abstract

Experimental evidence suggests that people tend to be overcon�dent in the sense
that they overestimate the accuracy of their own predictions. In this paper we present
a principal-agent model in which principal's interest in diversi�cation motivates him
to hire overcon�dent agents. We show that the induced overcon�dence satis�es ex-
perimental stylized facts. In addition, we show that overcon�dence is a unique evo-
lutionarily stable strategy, and that it can Pareto-improve social welfare. Finally, we
demonstrate applicability by demonstrating why CEOs hire overcon�dent interme-
diate managers, and why investors prefer overcon�dent entrepreneurs.
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1 Introduction

Many experimental studies ask participants to answer a two-alternative (usually general
knowledge) question, and to report their con�dence (subjective probability) that they an-
swered the question correctly. The typical result in such experiments is that people are
overcon�dent: their con�dence systematically exceeds their true accuracy. In this paper, we
present a theoretical model that studies the relation between overcon�dence and diversi�ca-
tion, and shows why principals prefer to hire overcon�dent agents in a variety of economic
interactions. Applying the model to a biological framework, gives a new evolutionary foun-
dation for overcon�dence.

The introduction is structured as follows. The following subsection presents the main exper-
imental �ndings about overcon�dence. Subsection 1.2 presents motivating examples for our
model, which is described in subsection 1.3. Subsection 1.4 discusses some extensions of our
model, and Subsection 1.5 shows how our model is used in a few examples.

1.1 Experimental Findings on Overcon�dence

The observed overcon�dence in experiments usually satis�es a few recurrent properties (or
e�ects). In the following paragraphs we describe the main observed properties. A more thor-
ough discussion of the related experimental, empirical and theoretical literature is given in
Section 2.

One of the main �ndings in the experimental literature is that the degree of overcon�dence
depends on the di�culty of the task - the hard-easy e�ect. The more di�cult the task, the
greater the observed overcon�dence (Lichtenstein, Fischho�, and Phillips, 1982; Moore and
Healy, 2008). A few papers suggest that the hard-easy e�ect and apparent overcon�dence
in general may be the result of choosing unrepresentative hard questions in experiments
(Gigerenzer, Ho�rage, and Kleinbolting, 1991), or regression toward the mean and boundary
e�ects in the presence of unbiased judgmental random errors (Erev, Wallsten and Budescu,
1994; Soll, 1996). Later experiments demonstrate that people still present overcon�dence (and
the hard-easy e�ect), though to a less extent, when representative questions are used (which
are randomly sampled from a natural set) and when unbiased judgmental random errors are
taken into account in the analysis (see, e.g., Budescu, Wallsten, and Au, 1997; Klayman et
al., 1999; Glaser, Langer and Weber, 2010).

Another �nding is the false certainty e�ect : people are often wrong when they are certain
in their private information. In the experiment of Fischho�, Slovic, and Lichtenstein (1977)
participants severely underestimated the probability they erred in seemingly easy questions.
Speci�cally, the error probability of 10% of the questions was estimated by the subjects to
be extremely low (less than 1:1,000), while the true error probability in these questions was
approximately 10%. The participants had su�cient faith in their con�dence judgments to be
willing to stake money on their validity.
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Gri�n and Tversky (1992) suggest that many observed patterns of overcon�dence (and un-
dercon�dence) can be explained by the strength-weight e�ect : �people focus on the strength
or extremeness of the available evidence with insu�cient regard for its weight or credence.
This mode of judgment yields overcon�dence when strength is high and weight is low, and
undercon�dence when strength is low and weight is high.� (Gri�n and Tversky, 1992, p. 411).
They also show that people tend to underuse base rate: to overweight the strength of an ev-
idence, and to underestimate the prior probability (similar �ndings appear in Brenner et al.,
1996; Novemsky and Kronzon, 1999; Koehler, Brenner and Gri�n, 2002; Brenner, Gri�n,
and Koehler, 2005).

Another interesting property is that people evaluate external uncertainty and internal un-
certainty di�erently (Howell and Burnett, 1978; Kahneman and Tversky, 1982). External
uncertainty is generated by sources external to the agent, such as: tossing a coin, the out-
come of a future football game and the behavior of a volcano mountain. Internal uncertainty
is generated by the state of knowledge of the agent. For example: whether or not Mont Blanc
is the tallest mountain in Europe. The experimental literature suggests that people exhibit
overcon�dence mostly for evaluations of internal uncertainty (see, e.g., Budescu, and Du,
2007, ). This overcon�dence for internal uncertainty can be interpreted as overestimation of
the accuracy of private information.

Some experiments (e.g., Gigerenzer, Ho�rage and Kleinbolting, 1991; Gri�n and Tversky,
1992) compare people's con�dence in giving correct answers by two methods: 1) each answer
is evaluated separately (case by case evaluation), and 2) after answering several questions,
participants are asked to evaluate the frequency of correct answers (set-based evaluation).
These papers show that people exhibit less overcon�dence (or even undercon�dence) when
evaluating set-based frequencies.

Finally, Sieber (1974) suggests that when more is on stake, people present more overcon�-
dence. In his experiment, two groups of students were compared. One group was told that
they were taking an their mid-term examination (important test). The other group was told
that the test is not mid-term, but would be used to coach them to mid-term (unimpor-
tant test). The two groups had similar number of correct answers, but the group with the
important test presented more overcon�dence.

1.2 Illustrating Examples

The following three examples are presented to illustrate the abstract model that is described
in the following subsection. Examples 1 and 2 are closely-related and deal with similar eco-
nomic interactions, while Example 3 is qualitatively di�erent and deals with a biological
setup.

Example 1 Consider a �rm that operates in several regions. The success of the �rm in
each region depends on the marketing strategy of the local manager. A marketing strategy
has higher success probability if it �ts either the national trend in consumer's preferences, or
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the local trend in the region. Industry's experts evaluate the expected national trend, and each
manager privately estimates the expected local trend in his region. Each manager is interested
in maximizing the success probability in his region. The risk-averse CEO of the �rm wishes
to maximize the number of regional successes.

Example 2 Consider an angel investor who invests money in several founders of startup
software companies (entrepreneurs). The success of each software depends on the platform in
which it is developed to (e.g., Smartphone, social network, personal computer, etc.). Analysts
evaluate which platforms are more likely to be popular. Each entrepreneur estimates which
platform is more adapted to his software. Each entrepreneur wishes to maximize his success
probability. The investor has diminishing marginal payo� from the total number of successful
startup companies.

Example 3 Each individual has to choose his occupation. Popular opinion predicts which
occupation is more likely to yield high �tness (e.g., �sh population seems large, and being a
�sherman seems good). Each individual privately estimates which action is best adapted to
his skills (e.g., whether or not he has good hunting skills). Each type (gene) in the population
induces a strategy for its members how to choose their occupation. When inducing such a
strategy the type has a tradeo� between two objectives: 1) maximizing the �tness of each
member, and 2) diversifying risk among its members.

1.3 Model and Results

Our basic model (Section 3) includes a principal and many agents. Each agent is characterized
by bias function g that determines how he evaluates the accuracy of private information: if the
true accuracy of a noisy private signal (probability of being correct) is p, the agent believes it
to be g (p). The strategic interaction includes two stages. At stage 1 the principal observes the
bias functions of the agents, and chooses which agents to hire. At stage 2, all agents receive a
common public noisy signal with a known accuracy, and each agent i receives an independent
private noisy signal with accuracy pi, which he perceives as g (pi).

2 Then each agent chooses
whether to follow the public signal or the private signal. 3 An agent receives high payo� if
the signal he followed was correct (success) and low payo� otherwise (failure). The payo� of
the principal is a concave increasing function of the average payo� of the agents.

Following the public signal bears a common risk - either all agents that follow it are successful
or all of them are unsuccessful. This creates a con�ict of interests between calibrated agents
(g (p) = p) who maximize their probability of success, and the principal who also wishes to
diversify risk among the agents. Our �rst result (Theorem 4) shows if the number of agents
is su�ciently large, then this con�ict is optimally resolved by hiring overcon�dent agents.

2 The accuracies of the public signal and of each private signals are independently drawn from
known distributions.
3 The assumptions that the public signal is evaluated without a bias and that each agent has only
two actions are without loss of generality as discussed in the following subsection.
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That is, there is a continuous and increasing bias function g∗, which always overestimates
the perceived accuracy of private information (g∗ (p) > p for every 0 < p < 1, see Figure
1 in Section 3), such that if all agents have this bias function, it approximately induces the
�rst-best outcome for the principal (the outcome he would achieve if he could receive all the
private signals and directly control agent's actions). We further show (Theorem 6) that g∗ is
unique in the following sense: all other bias pro�les, including heterogeneous pro�les in which
agents have di�erent bias functions, induce strictly worse outcomes. 4

Our third result (Theorem 7) shows that more risk-aversion induces more overcon�dence.
That is, if principal I is more risk-averse than principal II, then he hires more overcon�dent
agents. Our next result (Theorem 8) presents further comparative statics under the mild
assumption that the principal's utility satis�es decreasing absolute risk-aversion. It shows
that the principal hires more overcon�dent agents if: 1) the payo� for success is higher; 2)
the payo� for failure is lower; and 3) the task is harder in the sense that there is higher
probability to receive less accurate private signals (�rst-order stochastic domination, see
Figure 4). These results are in accordance with the stylized facts described earlier: the �rst
two results �t the �ndings of Sieber (1974), and the third result �ts the hard-easy e�ect.

Our last result (Theorem 9) assumes that the principal has a constant relative risk aversion
(CRRA) utility . It shows that the optimal overcon�dence bias only depends on the (relative)
potential gain - H−L

L
, where H is the payo� for success and L is the payo� for failure, and that

a larger potential gain induces more overcon�dence (see Figure 5). In addition we show that
ratio between the perceived error probability and the true error probability of the private
information is decreasing in the di�culty level. Moreover, if the payo� for failure is close to
0, then this ratio is very low for seemingly easy tasks in accordance with the false certainty
e�ect.

1.4 Variants and Extensions

In Section 4 we present a few variants and extensions of the basic model. We �rst show that
our assumption that the number of agents is exogenously given and large, can be relaxed. We
allow the principal to choose the number of agents, and show that he prefers to hire many
agents. In particular, we show that the principal always prefer to hire k · n agents instead of
only n agents. 5

Later, we show that our results hold when agents are informed experts who recommend the
principal which action to choose. In addition, we show that our model can also describe
situations in which agents have more than two actions. Speci�cally, each agent chooses an
action out of a �xed set, and each signal is interpreted as describing which of these actions
is the best one. We show that in this setup, having the optimal bias function g∗ can also be
interpreted as underusing base rates (described in Subsection 1.1).

4 As demonstrated in Example 5, when the number of agents is small, our results do not hold.
5 Example 11 shows that that the principal may prefer hiring 2 agents instead of 3.
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Next, we adapt our results to a setup that is more appropriate to Examples 1-3, and is also
valid when the agents can share their information before taking their actions. Speci�cally,
each agent is successful by either choosing the best action (on average), or by choosing an
action that is most-adapted for his characteristics. The public signal describes which action
is more likely to be the best, and the private signal points on the action that is more likely
to be most-adapted.

We then show that our assumption that agents only have bias for their private signals (and
not for the public signal) is without loss of generality. When agents can have both biases, the
unique optimal bias function g∗ is the relative overestimation of private information with re-
spect to the public information. This is interpreted as overcon�dence, and it is closely related
to the stylized facts discussed earlier: 1) the public signal may be induced by the aggregation
of many �weak� signals of di�erent agents; such aggregation induces less overcon�dence due
to the strength-weight e�ect; and 2) it is plausible that history of past games played by
di�erent agents encourage agents to treat the uncertainty of the public signal as external,
and evaluate it by set-based frequencies, which decreases the overcon�dence with respect to
the public signal. A similar interpretation of overcon�dence can be found in other models in
the literature (see, e.g., Bernardo and Welch, 2001; Grubb, 2009).

Later, we extend our results to a setup where private information is costly, and each agent
privately invests e�ort in improving the accuracy of his private signal. Finally, we show that
our results hold in setups where the agents are more risk-averse than the principal.

1.5 Applying the Model in Examples

In Section 5 we apply our model in an evolutionary framework. As described earlier (Example
3), in each generation, each agent chooses an action, and this choice in�uences his �tness: he
receives high payo� if he chooses the best action or his most-adapted action and low payo�
otherwise. Each type (gene) induces a (possibly random) bias function for its members. In the
long run the unique surviving type would be the one that maximizes the expectation of the
logarithm of the average �tness of its members (see, e.g., Mcnamara, 1995, and the discussion
in Section 5). Thus adapting our results to this framework, explains why overcon�dence is
evolutionarily stable. We further discuss predictions for di�erent levels of overcon�dence in
di�erent societies (see, e.g., the experimental �ndings in Yates et al., 2002), and the plausi-
bility that the induced overcon�dence satis�es the patterns that are observed in experiments
(such as, the false certainty e�ect).

It is interesting to compare our evolutionary model for overcon�dence with existing related
evolutionary models. In Bernardo and Welch (2001)'s model a small proportion of individuals
are overcon�dent, while the rest of the population are calibrated. Being overcon�dent reduces
the personal �tness of an individual, but it substantially improves the �tness of his group,
by inducing positive information externality in cascade interaction. Under the assumption
that the evolutionary dynamics combines both group and individual selection, the evolution-
arily stable pro�le includes a minority of overcon�dent individuals. Contrary to that, being
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overcon�dent in our model directly improves the type's �tness (without information external-
ity), and it induces an evolutionarily stable pro�le in which all individuals are overcon�dent.
Waldman (1994) shows that �second-best� adaptations can be evolutionarily stable with sex-
ual inheritance, and demonstrates that the combination of overcon�dence (overestimating
self-ability) with excess disutility from e�ort is a �second-best� adaptation. Contrary to that,
in our model overcon�dence induces the ��rst-best� outcome, and does not compensate for
another error.

In Section 6 we discuss Examples 1-2. Recall that Example 1 demonstrates why a risk-averse
CEO prefers to hire overcon�dent intermediate mangers, who induce better diversi�cation
for the CEO. Observe that choosing overcon�dent intermediate managers is bad from the
perspective of the risk-neutral shareholders, as it reduces the expected pro�t of the �rm. This
con�ict of interests with the shareholders prevents the CEO from achieving diversi�cation by
formally allocating monetary incentives to calibrated intermediate mangers. It is interesting
to compare this result with the model of Gervais, Heaton and Odean (2010), in which, given
that the CEO is risk-averse, it is optimal for the risk-neutral shareholders, if the CEO is
overcon�dent, and overestimates his ability to reduce risks. 6

Recall that Example 2 shows why investors would invest their money in overcon�dent en-
trepreneurs, who induce better diversi�cation for the investor. 7 This gives a new explanation
to the high level of overcon�dence that entrepreneurs present in experimental studies (see,
Cooper , Woo, and Dunkelberg ,1988; Busenitz and Barney, 1997).

Section 6 also includes an example that shows how overcon�dence can induce Pareto-optimal
social outcomes, which Pareto-improve the outcome that is induced by calibrated agents.

1.6 Structure of the Paper

The structure of the remaining of this paper is as follows. Section 2 discusses the related
literature. Section 3 presents the basic model and the results. A few extensions and variants
are discussed in Section 4. Section 5 applies our model in an evolutionary framework. Section
6 includes examples for the applicability of the model in economic interactions.

2 Related Literature

The term �overcon�dence� has been widely used in psychology since the 1960s, and in the
economics and �nance literature since the 1990s. Google Scholar reports on 876 papers that

6 Goel and Thakor (2008) also study how a risk-averse CEO's overcon�dence enhances �rm's value.
7 Observe, that expensive monetary incentives are needed to encourage a calibrated entrepreneur
(who holds a large share of his startup companies) to reduce the investor's total risk and follow a
nosier private signal.
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include this term in their titles and about 40,000 papers that include it anywhere in the text
(September 2010). In this section we brie�y discuss a small portion of this literature.

The interested reader is referred to the following surveys on overcon�dence: the classical
survey of Lichtenstein, Fischho� and Phillips (1982), which summarizes overcon�dence liter-
ature in the 1960s and 1970s; the survey of Gri�n and Brenner (2004) that summarizes the
theoretical controversies about overcon�dence, and the recent survey of Skala (2008).

2.1 De�nitions of Overcon�dence and Experimental Literature

The term overcon�dence has been de�ned by three main ways in the literature. The most
popular de�nition describes overcon�dence as a systematic calibration bias, for which the
assigned probability that the answers given are correct exceeds the true accuracy of the
answers (see e.g., Oskamp, 1965; Lichtenstein, Fischho� and Phillips, 1982; Brenner et al.,
1996; Dawes and Mulford, 1996). This systematic bias is interpreted as overestimation of the
accuracy of private information. As mentioned earlier, this is the de�nition we use in this
paper.

A related de�nition of overcon�dence is excessive certainty regarding the accuracy of one's
beliefs about an uncertain continuous quantity. Researchers examining this e�ect typically
ask their participants questions with numerical answers (e.g., �How long is the Nile River?�),
and then have participants estimate (usually 90%) con�dence intervals. Overcon�dence is
measured by the rate of surprises, i.e., the percentage of true values falling outside the con�-
dence intervals. The typical �nding (see Lichtenstein, Fischho� and Phillips, 1982; Russo and
Schoemaker, 1992) is that people tend to present substantial overcon�dence: 90% con�dence
intervals contain on average only 50% of the true values. 8

The third de�nition of overcon�dence describes the phenomenon in which people believe
themselves to be better than average. A review of this literature can be found in Alicke and
Govorun (2005). A typical �nding in this literature is the oft-quoted �nding of Svenson (1981)
that 77% of Swedish subjects felt they were safer drivers than the median. This bias is closely
related to overly positive self-evaluations and to over-optimism about the future. Taylor and
Brown (1988) report such phenomena to be positively correlated with di�erent criteria of
mental health. Recently, Moore (2007) and Benoit and Dubra (2008) suggest that most of
the experimental �ndings of the better than average phenomenon can also be explained by a
fully-rational Bayesian model.

Training improves overcon�dence but usually only to a limited extent. Russo and Schoemaker
(1992) show that asking people job relevant questions reduced overcon�dence from 50% to
30% (for 90% con�dence interval). Weather forecasters, who typically have several years of
experience in assessing probabilities and receiving an immediate feedback, are quite well

8 People also present overcon�dence for 50% con�dence intervals and for free-choice intervals, but
this overcon�dence is substantially smaller (Soll and Klayman, 2004; Teigen and Jorgensen, 2005).
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calibrated (Lichtenstein, Fischho� and Phillips, 1982; and also expert Bridge players - see
Keren, 1987). Other experts such as physicians and professional traders, tend to present
substantial con�dence biases (see, e.g., Koehler, Brenner and Gri�n, 2002; Glaser, Langer,
and Weber, 2010).

Empirical data suggests that people present overcon�dence not only in the lab but also in
real-life situations. Russo and Schoemaker (1992) report the following example: �newly hired
geologists were wrong much more than their levels of con�dence implied. For instance, they
would estimate a 40% chance of �nding oil, but when ten such wells were actually drilled, only
one or two would produce.� Henrion and Fischho� (2002) show that scientists systematically
underestimate uncertainty in measurements of physical constants. Chuang and Lee (2006)
empirically evaluate data on prices of �rms in NYSE and AMEX during 1963-2001 and
�nd evidence in support of the overcon�dence hypothesis: investors overestimate accuracy
of private information. Finally, Grubb (2009) analyzes consumer tari� choices and usage
decisions of cellular services, and show that the consumers are overcon�dent in their ability
to estimate their future demand for cellular services.

Examples predict overcon�dence among entrepreneurs and managers. Cooper, Woo and
Dunkelberg (1988) demonstrated that entrepreneurs perceive their prospects much more fa-
vorable than the true odds, and Busenitz and Barney (1997) showed that entrepreneurs
substantially overestimate the probability that their answers for general-knowledge questions
are correct. Recently, Ben-David, Graham and Harvey (2010) demonstrated that �nancial
managers overestimate their ability to predict stock market returns.

2.2 Financial and Economic Models

In this subsection we brie�y survey some related �nancial and economic models that deal
with overcon�dence.

A few papers study motivational reasons for overcon�dence. Bénabou and Tirole (2002)
present a multiple-self model, in which a rational agent tries to deceive his future self to be
overcon�dent (overestimate his ability), in order to motivate him to undertake more ambitious
goals and persist in the face of adversity. Compte and Postelwaite (2004) present a model in
which positive emotions can improve performance, and individuals use biases in information
processing that enhance their welfare. Köszegi (2006) and Weinberg (2009) model a decision
maker who in addition to having preferences over material outcomes, also derives �ego� utility
from positive self-image. In such a setup, moderate overcon�dence raises the expected wealth.

Other papers study the evolutionary process that is generated by wealth that �ows between
investors in an asset market, and investigate the conditions in which overcon�dence can
survive or even dominate the market. Blume and Easley (1992) and Wang (2001) present
models in which investors have high level of risk-aversion (or high discount factor), and
overcon�dent investors can dominate the market due to trading more aggressively in the right
way. Gervais and Odean (2001) show how a tendency of a trader to take too much credit
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for successes leads relatively-inexperienced successful traders to become overcon�dent. With
more experience, investors better recognize their abilities. In markets where inexperienced
traders continuously enter and old traders die, there will always be overcon�dent traders,
and these traders will tend to control more wealth than their less con�dent peers.

Van den Steen (2004) models �rational overcon�dence�. Agents have an unbiased random
error when evaluating their success probability for each possible action. When such agents
face a choice among a few actions, they are more likely to select actions for which they
overestimate the probability of success. Thus they will tend to be overcon�dent about the
likelihood of success of the actions they undertake.

A few papers study the in�uence of overcon�dent agents on di�erent markets. Odean (1998)
shows that overcon�dence among investors in �nancial markets increases expected trading
volume, increases market depth, and decreases the expected utility of overcon�dent trader.
Sandroni and Squintani (2007) show the the presence of some overcon�dent agents qualita-
tively change the equilibrium and the policy implications in insurance markets with asym-
metric information.

3 Model and Results

3.1 Model

Let I = {1, ..., n} be a set of agents. A typical agent is denoted by i ∈ I. The unknown state

of nature determines the value of the tuple of random variables
(
q, (pi)i∈I ,mq, (mi)i∈I

)
∈(

[0, 1]× [0, 1]I × {0, 1} × {0, 1}I
)
as follows:

• q ∼ fq, where fq is a continuous pdf (probability density function) with a full support:
fq (q) > 0 for every q ∈ [0, 1]. 9 q is interpreted as the accuracy of the public signal.
• For each i ∈ I, pi ∼ fp, where fp is a continuous pdf with full support: fp (p) > 0 for
every p ∈ [0, 1]. Let Fp be its cumulative distribution function (cdf). pi is interpreted as

the accuracy of the private signal of agent i. The variables
(
q, (pi)i∈N

)
are independent.

• mq is equal to 1 with probability q (and 0 otherwise). mq = 1 (mq = 0) is interpreted as
the event where the public signal is correct (incorrect), and following it yields all agents
high (low) payo�.
• For each i ∈ I, mi is equal to 1 with probability pi (and 0 otherwise). mi = 1 (mi =

0) is interpreted as the event where the private signal of agent i is correct (incorrect),

and following it would yield agent i high (low) payo�. The variables
(
mq, (mi)i∈N

)
are

independent.

9 The full support assumption is given to simplify the presentation of the results. The results are
qualitatively una�ected by relaxing this assumption.
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The strategic interaction between the principal and the agents includes two stages. At stage 1
the principal (who has no information on the state of nature) chooses a pro�le of bias functions
(gi)i∈I . Each function gi : [0, 1] → [0, 1] determines the bias of agent i when estimating
accuracy levels of private signals. That is, if the private signal of agent i has accuracy pi,
he mistakenly believes it to have accuracy gi (pi).

10 The choice of the bias pro�le (gi)i∈I
is interpreted as follows: there is an in�nite pool of potential agents with all possible bias
functions. The principal can observe these biases, and choose |I| agents with any given pro�le
of bias functions. 11 After stage 1, all agents are publicly informed about the value of q (the
accuracy of the public signal), and each agent i with bias function gi, is (mis-)informed that
the value of pi is gi (pi).

At stage 2 each agent i chooses an action ai ∈ {apub, apri}, 12 where apub (apri) is interpreted
as following the public (private) signal. The payo� of agent i is as follows:

ui (apub) = ui (apub) =

H if mq = 1

L if mq = 0
, and ui (apri) =

H if mi = 1

L if mi = 0
,

where H > L > 0. That is, the agent receives high payo� (H) if the signal he followed was
correct (success), and low payo� (L) otherwise (failure). Let D = H−L

L
be the (normalized)

potential gain: the ratio between the potential gain from following a good signal (H−L) and
the minimal guaranteed payo� (L).

Our assumption that fp and fq are continuous guarantee that the inequality q 6= g (pi) holds
with probability 1. Thus, each bias pro�le (gi)i∈I induces a strictly-dominating strategy pro�le
for each agent i: following the public signal apub if q > gi (pi), and following the private signal
if q < gi (pi).

13 Let ui (gi) = ui (gi,pi,q,mq ,mi) be the random variable that describes the
payo� of agent i while using this strictly-dominating strategy.

The payo� of the principal, u
(
(gi)i∈I

)
, is a vN-M (John von-Neumann and Oscar Morgen-

stern, 1944) strictly concave increasing function of the average payo� of the agents:

u
(
(gi)i∈I

)
= E(pi )i∈I ,q,mq ,(mi )i∈I

(
h

(
1

n

∑
i∈I

ui (gi)

))
where h′ > 0 and h′′ < 0 in [0, 1].

Bias pro�le (g∗i )i∈I is ε-optimal (for ε > 0) if it yields the best payo� up to ε: u
(
(g∗i )i∈I

)
>

u
(
(gi)i∈I

)
− ε for every pro�le (gi)i∈I . Let the �rst-best payo� the game, be the payo� that

10 The assumption that each agent only has bias with respect to his private signal (but not with
respect to the public signal) is without loss of generality, as discussed in Subsection 4.6.
11 The number of agents the principal hires is exogenously given in the basic model. In Subsection
4.1 we extend the model to allow the principal to choose the number of hired agents.
12 The assumption that each agent has only two actions is essentially without loss of generality, as
discussed in Subsections 4.3 and 4.5.
13 and playing arbitrary if q = g (pi) (a 0-probability event).
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can be achieved by the principal if he would obtain all the private signals and have full control
over the agents' actions. A bias pro�le ε-induces the �rst-best payo�, if its payo� is as good
as the �rst-best payo� up to ε.

Bias pro�le (gi)i∈I is homogeneous (or symmetric) if all agents have the same bias function:
∀i, j ∈ I, gi = gj. With some abuse of notations, we identify a function g : [0, 1]→ [0, 1] with
the homogeneous pro�le (g)i∈I . We say that g is an optimal bias function (for large number
of agents) if for every ε > 0, there is large enough n0 such that for any game with at least
n0 agents, g is an ε-optimal pro�le. Similarly, we say that g induces the �rst-best payo� (for
large number of agents) if for every ε > 0, there is large enough n0 such that for any game
with at least n0 agents, g ε-induces the �rst-best payo�.

3.2 Overcon�dence as a unique Optimal Bias Pro�le

The following theorem characterizes the optimal bias function (all proofs are given in the
appendix). It shows that there exists a unique optimal bias function g∗ that reveals over-
con�dence: g∗ (p) > p for every 0 < p < 1. Moreover, this overcon�dence bias induces the
principal's �rst-best payo�.

Theorem 4 There exists a unique optimal bias function g∗, which induces the �rst-best
payo�, with the following properties:

(1) g∗ is continuous, g∗ (0) = 0, and g∗ (1) = 1.

(2) g∗ is increasing: dg∗(p)
dp

> 0 for every 0 < p < 1.

(3) Overcon�dence: g∗ (p) > p for every 0 < p < 1.

The proof of all the results are given in the appendix. The intuition for Theorem 4 is as
follows. There is a con�ict of interest between a calibrated agent (g (p) = p) who maximizes
his probability of success, and the principal who wishes some agents with pi < q to follow
the private signal in order to diversify and to reduce the variance of the number of successes.
Choosing which signal agent i would follow in the principal's �rst-best action pro�le, generally
depends on the entire realized pro�le of private accuracies: (p1, ..,pn). However, when there
are many agents, the realized empirical distribution of accuracies is very close to its prior
distribution fp. Thus, approximately, the optimal choice of agent i only depends on the
realizations of pi and q. Speci�cally, for every q, there is some threshold level g−1 (q) < q
such that it is approximately optimal for the principal if an agent would follow the private
signal if and only if pi > g−1 (q). These threshold construct the optimal bias function g (p) .

The following example shows that Theorem 4 is not valid when the number of agents is small.
In this example, there is an asymmetric bias pro�le that induces higher payo� than the best
bias function, and in addition the �rst-best outcome is substantially better than what can
be induced by bias pro�les.

Example 5 There are two agents. Let the low payo� be zero (L = 0), and the high payo�
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one (H = 1). Let the principal's utility be: 14

h (x) =

2x if x < 0.5,

1 if x ≥ 0.5.

That is, the principal wishes that at least one agent succeeds (but does not care if both agents
succeed or only one of them). Let the distribution of the accuracy of the private signals be
uniform on (0, 0.5): fp ∼ Uniform (0, 0.5). Consider the case in which the accuracy of the
public signal is 0.7. One can see that the best bias function (i.e., symmetric bias pro�le) is one
such that (approximately) g (0.34) = 0.7, 15 and that it induces payo� 0.75. The principal can
achieve higher payo� of 0.775 by using the following optimal heterogeneous bias pro�le: one
agent always follow the public signal while the other agent always follow the private signal.
The principal's �rst best payo� is even higher - 0.8, and it is achieved by observing both
private accuracies, and having the agent with the higher (lower) accuracy follow the private
(public) signal.

Figure 1 demonstrates how an optimal bias function g∗ looks like (for potential gain D =
H−L
L

= 3, principal's utility h (x) = ln (x), and a uniform distribution for the accuracy of the
private signal).

Theorem 4 shows uniqueness in the set of homogeneous bias pro�les. That is, it shows that
any other homogeneous bias pro�le induces a worse outcome than g∗, given that the number
of agents is su�ciently large. The following theorem extends the uniqueness also to the set
of heterogeneous pro�les. It shows that every heterogeneous pro�le can be replaced with an
homogeneous pro�le that induces a strictly better outcome, given that the number of agents
is su�ciently large.

Two auxiliary de�nitions are needed for stating Theorem 6. Bias pro�le (gi)i∈I is heteroge-
neous if there a set Q ⊆ [0, 1] with a positive Lebesgue measure such that for each q ∈ Q,
mini (gi)

−1 (q) < maxi (gi)
−1 (q). With some abuse of notations, we identify the bias pro�le

(gi)i∈I with the following bias pro�le in a game with k · |I| agents: agents {1, ..., k} have bias
function g1, agents {k + 1, ..., 2k} have bias function g2, ..., agents {k · (|I| − 1) + 1, ..., k |I|}
have bias function g|I|.

Theorem 6 Let (gi)i∈I be an heterogeneous pro�le. Then there is k0 such that there is an
homogeneous pro�le that induces a strictly better payo� than (gi)i∈I in the game with k ·
|I|agents for every k ≥ k0.

The intuition for Theorem 6 is as follows. Let g be a bias function (an homogeneous pro�le)
that induces the same expected number of agents that follow the public signal for every

14 To simplify the example we use a weakly concave and increasing function h, and a distribution
fp without full support. The example can be adapted such that h would be strictly concave and
increasing and fp would have full support.
15 p∗0 = 0.34 maximizes the expression:F 2 (p0)·0.7+2·(1− F (p0))·F (p0)·(0.7 + 0.3 ·E (p|p > p0))+
(1− F (p0))2

(
1− (1−E (p|p > p0))2

)
.
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Figure 1. An Example for an Optimal Con�dence-Bias Function
(D = 3, h (x) = ln (x), uniform distribution)

0 < q < 1. One can show that the expected average accuracy level of the private signals
that are followed is strictly higher given g than given the heterogeneous pro�le (gi)i∈I . If the
number of agents is su�ciently large, then the law of large numbers imply thatg induces a
strictly better payo�.

3.3 Characterization and Comparative Statics

The following proposition shows that more risk-aversion induces more overcon�dence. That
is, if principal I is more risk-averse than principal II, then he hires agents with higher level
of overcon�dence. The intuition is similar to that of Theorem 4.

Proposition 7 Assume h1 = ψ ◦ h2, where ψ is concave and increasing. Let g∗1 (g∗2) be the
unique optimal bias function given that the principal's utility is h1 (h2). Then, g

∗
1 (p) > g∗2 (p)

for every 0 < p < 1.

We demonstrate the above result in Figure 2. It assumes that principal's utility has con-
stant relative risk aversion (CRRA, see below), and it shows the optimal overcon�dence bias
(g∗ (p)− p) for di�erent levels of relative risk aversion: θ = 2, θ = 1 (i.e., h (x) = ln (x)), and
θ = 0.5. The �gure assumes that the potential gain is: D = H−L

L
= 2, and that the accuracy
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Figure 2. Optimal overcon�dence (g∗ (p)− p) for di�erent risk-aversion levels (D=2, Uniform pdf)

of the private signal is uniformly distributed in [0, 1]).

Our next result presents further comparative statics under the mild assumption that the
principal's utility satis�es decreasing absolute risk-aversion. Speci�cally, it shows that the
optimal level of overcon�dence is higher if:

(1) The high payo� for success (H) is higher.
(2) The low payo� for failure (L) is lower.
(3) The task is harder, in the sense that there is higher probability to receive less accurate

private signals (�rst-order stochastic domination). That is, it shows that our model
predicts the hard-easy e�ect (presented in the introduction).

Theorem 8 Assume that the principal's utility h satis�es decreasing absolute risk-aversion.
That is, Arrow-Pratt coe�cient of absolute risk-aversion rA (x) = −h′′(x)

h′(x)
is a decreasing

function of x. Then higher level of optimal overcon�dence (g∗2 (p) < g∗1 (p) for every 0 < p < 1)
is induced by:

(1) Higher payo� for success: H2 > H1.
(2) Lower payo� for failure: L2 < L1.
(3) Harder tasks (less accurate private signals): If p2 has �rst order stochastically dominance

over p1.

The intuition of the �rst two results is as follows. The higher the di�erence between H and
L, the higher the risk of having many agents follow the public signal (as the variance of
the payo� becomes larger). This induces the principal to hire more overcon�dent agents, to
compensate of the excess risk.
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Figure 3. Di�erent Private Accuracy Distributions

The intuition of the last result (harder tasks induces more overcon�dence) is that the principal
wishes that the agents with the highest levels of private accuracy would follow their private
signals. When there is higher probability to receive less accurate private signals, each accuracy
level pi is more likely to be one of the highest levels.

The last result is demonstrated in Figure 4, which shows the induced optimal overcon�dence
g∗ (p) − p for di�erent prior Beta distributions for the accuracy of the private signal (with
θ = 1 and D = 2), which are presented in Figure 3: 1) decreasing distribution (α = 1, β = 2,
expectation - 33%), 2) uniform distribution (α = 1, β = 1, expectation - 50%), and 3)
increasing distribution (α = 2, β = 1, expectation - 67%). Observe that the last distribution
stochastically dominates the second distribution, which stochastically dominates the �rst
distribution. The �gure assumes that the principal's utility is: h (x) = ln (x), and that the
potential gain is: D = H−L

L
= 2.

Finally, our last result deals with the case in which the principal has constant relative risk
aversion (CRRA). That is:

h (x) =


x1−φ

1−φ if φ > 0, φ 6= 1,

ln (x) if φ = 1,

where φ > 0 is the relative risk aversion of the principal.

The following theorem shows that with the CRRA assumption the induced optimal overcon-
�dence satis�es the following properties:

(1) The optimal level of overcon�dence only depends on the potential gain D = H−L
L

(and
not on L and H directly). Speci�cally, larger potential gain induces more overcon�dence
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Figure 4. Overcon�dence for Di�erent Private Accuracy Distributions (θ = 1, D = 2)

(see Figure 5). This �ts the experimental �ndings of Sieber (1974), which were discussed
in Subsection 1.1.

(2) The ratio between the perceived error probability and the true error probability of the
private information is decreasing in the di�culty level. Moreover, if the potential gain D
is large, then agents are often wrong when they are certain in their private information
(false certainty e�ect, see Figure 8 in Section 5).

Theorem 9 Assume that the principal has a CRRA utility function with parameter θ. Then
the unique optimal bias function is:

g∗ (p) =
Bp

1− p+Bp
, where B =

1 +
D · Fp (p)

1 +D ·
´ 1

p
x · fp (x) dx

φ ,

and it satis�es the following properties:

(1) Overcon�dence (g∗ (p)− p) is increasing in the potential gain D = H−L
L

.
(2) The ratio between the perceived and the true probability that the private signal is incorrect

(1−g(p)
1−p ) is decreasing in p, and it converges to (D + 1)φ =

(
H
L

)φ
as p converges to 1.

Figure 5 demonstrates the �rst result of Theorem 9. It shows the induced optimal overcon�-
dence g∗ (p)− p for di�erent levels of potential gains: D = 10, D = 4 and D = 2 (with θ = 1
and a uniform distribution).
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Figure 5. Overcon�dence for di�erent potential gain levels (θ = 1,Uniform pdf)

4 Variants and Extensions

This section includes a few variants and extensions of the basic model, which relax some of
our assumptions, and allow to apply it in a broader variety of applications (as discussed in the
following sections). In each subsection we only present the di�erences between the described
variant and the basic model.

4.1 Choosing the Number of Agents

In the basic model we assumed that the number of agents is large. In this subsection we
relax this assumption. Speci�cally, we allow the principal to choose the number of agents he
employs, and then to choose the bias pro�le of the hired agents. We show that it is optimal
for the principal to hire large number of agents.

The following proposition shows that for every n the principal strictly prefers to hire k · n
agents than n agents.

Proposition 10 For each n ≥ 1 and k ≥ 2 the principal can induce a strictly better outcome
when the number of agents is k · n than when it is n.

The intuition of Proposition 10 is that having more agents allow the principal to achieve
better diversi�cation. Each bias pro�le (gi)i∈I with n agents can be replaced with a similar
pro�le with k ·n agents, in which each bias function gi is induced by k agents. It can be shown
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that the random number of success in the game with k · n agents second order stochastically
dominates the number of success in the game with n agents, and thus it is more preferred by
the principal.

The following example shows that the principal may prefer employing 2 agents than employ-
ing 3 agents.

Example 11 (Example 5 revisited) Let L = 0, H = 1, fp ∼ uniform (0, 0.5), q = 0.7 and
let the principal's utility be:

h (x) =

2x if x < 0.5,

1 if x ≥ 0.5.

Recall (Example 5) that when there are two agents the principal can achieve payo� 0.775 by
using an asymmetric bias pro�le: one agent always follow the public signal while the other
agent always follow the private signal. When there are three agents, the principal's best payo�
is only 0.75, and it is achieved by having two agents always follow the public signal, and one
agent always follow his private signal. The intuition of the preference for having 2 rather
then 3 agents is as follows. The de�nition of the payo� function h implies that the principal
mainly cares that at least 0.5 of his agents would succeed. It is easier to achieve it when there
are only 2 agents (1 of them should be successful) rather then when there are 3 agents (and
2 of them should be successful).

4.2 Agents as Experts

Consider a variant of the basic model in which at stage 2 each agent recommends an action
(which signal to follow), and the principal chooses the pro�le of actions (ai)i∈N based on
these recommendations. That is, each agent i is an informed expert, who advises the principal
what to do in his local environment i, based on his private information. Each expert's payo�
remains the same as in the basic model: high payo� if the recommended signal was correct,
and low payo� otherwise.

If all agents are calibrated (g (p) = p), then too many agents would recommend the principal
to follow the public signal (all experts i with pi < q). The principal can gain higher payo�
than in the basic model, by not following some of the recommendations. However, his inability
to separate agents with inaccurate private signals (pi is substantially smaller than q) from
agents with more accurate private signals limits his payo�.

One can see that this variant yields the same optimal bias function g∗. This is because agents
that follow g∗ induce the principal's �rst-best payo�. Speci�cally, they act as if they have the
same utility as the principal including his interest in diversi�cation. Thus, the principal will
always choose to follow the recommendations of such g∗-biased experts.
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4.3 Choice between k alternatives

The basic model assumes that agents have only two actions: follow the public signal or follow
the private signal. In this subsection we show that this assumption is especially without
loss of generality. Speci�cally, we present a variant of the model in which each agent has to
choose an action out of a �xed set of k alternatives. Let A be the set of actions of each agent:
1 < |A| = k < ∞. The unknown state of nature determines a single best action abest ∈ A.
In order to keep the model simple and tractable, we assume that each action has the same
prior probability ( 1

k
) to be the best action.

In this variant, the public signal includes two parts: 1) an action apub ∈ A, and 2) an accuracy
level q - the probability that apub = abest. If the public signal is incorrect (apub 6= abest), then
apub is uniformly distributed among all other actions: A\ {abest}. Similarly, the private signal
of each agent i includes two parts: 1) an action in apri ∈ A, and 2) an accuracy level pi- the
probability that apri = abest, and conditional on apri 6= abest, apriis uniformly distributed in
A\ {abest}. Each signal is independent of each other signal (given the value of abest).

We assume that fq and fp are continuous pdfs with full support on x ∈
[

1
K
, 1
]
. That is, given

that action a is being signaled by either the public or the private signal, it is more likely that
a is the best action. At stage 2 each agent i chooses an action ai ∈ A. The payo� of agent i
is:

ui (ai) =

H if ai = abest,

L if otherwise.

Observe that it is a dominating strategy for each agent to choose to either follow the public
or the private signal (and not to choose an action that is not recommended by any of the
signals). All of our results (Theorems 4-9) hold in this setup as well.

4.4 Underusing Base Rates

In this subsection we present a di�erent interpretation to the variant described in the previous
subsection, and show that the optimal bias pro�le can be interpreted as insensitivity to prior
probability or underusing base rates.

For simplicity of presentation we assume that there are only two actions: A = {l, r}. Let C be
the event that the public signal is correct. We interpret q as its prior probability (q = P (C)).
Let D be the event that the private signal is di�erent than the public signal. To maximize
his payo�, an agent should follow the public signal if the posterior probability P (C|D) is at
least 0.5, and follow the private signal if P (C|D) < 0.5. 16 A calibrated agent (g (p) = p)

16 If both signals recommend the same action, then the agent should choose this action.
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calculates the posterior probability correctly:

P (C|D) =
P (D|C)P (C)

P (D|C)P (C) + P
(
D|C̄

)
P
(
C̄
) =

(1− p) · q
(1− p) · q + p · (1− q)

An agent with bias g plays as if his posterior probability is:

Pg (C|D) =
P (D|C)Pg (C)

P (D|C)Pg (C) + P
(
D|C̄

)
Pg
(
C̄
) =

(1− p) · g−1 (q)

(1− p) · g−1 (q) + p · (1− g−1 (q))

Thus, agents with the optimal bias function g∗ play as if they are insensitive to the prior
distribution in the following sense: when the true prior is P (C) = q > 0.5, the agent plays
as if the prior is a mixture between a uniform prior and the true prior: 0.5 ≤ Pg∗ (C) =
(g∗)−1 (P (C)) < P (C). Speci�cally, if the prior is changed from (0.5, 0.5) to (q, 1− q), the
agent is only partially sensitive to this change, and he plays as if the prior probability is(
(g∗)−1 (q) , 1− (g∗)−1 (q)

)
where 0.5 ≤ (g∗)−1 (q) < q. Similar e�ects are experimentally

demonstrated in Gri�n and Tversky (1992), Brenner et al. (1996), Novemsky and Kronzon
(1999), Koehler, Brenner and Gri�n (2002), and Brenner, Gri�n, and Koehler (2005).

4.5 Choice between k alternatives with i-adapted actions

The variant of choice between k alternatives presented in Subsection 4.3 has a potential
drawback in setups in which agents can communicate among themselves and share their
private signals. In such setups, agents could obtain the true value of the best action (abest)
with high probability by combining a large number of independent private signals. This is
solved in the following variant in which private signals are related to i-adapted actions (and
not to the best action).

In this variant each agent has to choose an action a ∈ A (1 < |A| = k < ∞). The unknown
state of nature determines a single best action abest ∈ A, and for each agent i ∈ N , it
determines a single i-adapted action ai−adpated ∈ A (which has a prior uniform distribution).

The values of
(
abest, (ai−adapted)i∈N

)
are independent. Action ai−adapted is interpreted as an

action that is well-adapted to the speci�c characteristics of agent i or for the speci�c properties
of his local environment.

The public signal includes two parts: 1) an action apub ∈ A, and 2) an accuracy level q -
the probability that apub = abest. If the public signal is incorrect (apub 6= abest), then apub
is uniformly distributed among all other actions: A\ {abest}. Similarly, the private signal of
each agent i includes two parts: 1) an action in apri ∈ A, and 2) an accuracy level pi-
the probability that apri = ai−adapted, and conditional on apri 6= ai−adpatedt, apriis uniformly
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distributed in A\ {ai−adapted}. Each signal is independent of each other signal (given the value
of abest).

At stage 2 each agent i chooses an action ai ∈ A. The payo� of agent i is:

u (ai) =

H if ai ∈ {abest, ai−adpated} ,
L otherwise.

.

Observe that the expected payo� when following an incorrect signal is equal to L̃ = L+ H−L
k

,
because there is probability 1

k
that the recommended public (private) signal is equal to

ai−adapted (abest). All of our results (Theorems 4-9) hold in this setup as well (with respect to
the revised low payo� L̃), and in this setup, they are not sensitive to the assumption that
agents cannot share their private signals.

4.6 Bias With Respect to the Public Signal

In the basic model we assume that agents can only have con�dence bias with respect to their
private signals, but not with respect to the public signal. In this subsection, we observe that
this assumption is without loss of generality.

Consider a more general model, where the bias of each agent i be described by two functions
(gi,1, gi,2) from [0, 1] to [0, 1], where gi,1 is his bias with respect to his private signal (accuracy
pi is perceived as gi,1 (pi)) and gi,2 is his bias with respect to the public signal (accuracy q is
perceived by agent i as gi,2 (q)). Observe that the choice of agent i between the two signals
only depends on the composite function (gi,2)

−1◦gi,1. This is because agent i chooses to follow
the public signal if gi,1 (pi) < gi,2 (q) ⇔ (gi,2)

−1 ◦ gi,1 (pi) < q. This implies that our results
remain the same in this extension. Speci�cally, the optimal pro�le is such that each agent i
has bias functions (gi,1, gi,2) that satisfy (gi,2)

−1 ◦ gi,1 = g∗, where g∗ has the properties that
were characterized in Theorems 4 and 9.

Thus one can interpret g∗ in the basic model as the bias in estimating accuracy of private
information relative to public information. A natural question that emerges is why we inter-
pret this bias in favor of private information as overcon�dence. Similar interpretations can be
found in other models in the literature (see, e.g., Bernardo and Welch, 2001; Grubb, 2009).
We motivate this interpretation by the following arguments:

(1) Assume that a long history of principal-agents games has been played in the past by dif-
ferent agents. Information about past public signals would encourage agents to evaluate
the accuracy of the public signal by set-based evaluations, and the historical data. The
experimental literature suggests that such evaluations tend to reduce overcon�dence
(see e.g., Gigerenzer, Ho�rage and Kleinbolting, 1991; Gri�n and Tversky, 1992). In
addition, if the environment is relatively stationary, simple learning rules would allow
the agents to be well calibrated with respect to the public signal. On the other hand,
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it is plausible that past detailed information about the success or failure of each agent
and his private signal is unavailable. If agents are relatively new in this game, then they
would not have empirical data to make set-based frequency evaluations for the private
signals.

(2) The public signal may be induced by the aggregation of many �weak� pieces of informa-
tion that are shared by di�erent agents. This especially �ts the variant with i-adapted
actions presented in Subsection 4.5. Each agent has a �weak� local signal about the
global state (abest), and by aggregating their information, agents create the public sig-
nal. Thus the public signal has high �weight� (many di�erent sources) but low �strength�
(each source has low accuracy). Gri�n and Tversky (1992) show that people tend to
underestimate accuracy of high-weight/low-strength signals (such as the public signal),
and overestimate the accuracy of low-weight/high-strength signals, such as the private
signals (each private signal has a single source with relative high accuracy).

(3) Internal v.s. external uncertainty - The public signal is related to uncertainty about the
outside world (external uncertainty). The private signal (in the variant with i-adapted
actions) is related to uncertainty about the characteristics and knowledge of the agent
(internal uncertainty). The psychological literature suggests that people evaluate these
two kinds of uncertainty di�erently, and that internal uncertainty induces more over-
con�dence (Budescu, and Du, 2007, P. 1741).

Alternatively, the above arguments can be used to show that the induced con�dence bias in
our model is in accordance with the observed stylized facts in the experimental literature:
strength-weight e�ect, hard-easy e�ect, and internal-external uncertainty.

4.7 Costly Private Signals

The basic model assumes that private signals are costless. In this subsection we relax this
assumption and extend our results to a more general framework that allows private signals
to be costly. In the extended model, an independent random variable 0 ≤ ti ∼ ft ≤ 1 is
assigned to each agent i ∈ N . Variable ti is interpreted as the e�ectiveness of agent i in
acquiring private information about his environment.

After agents are publicly informed about the value of q (the accuracy of the public signal),
each agent is privately informed of ti. Then, each agent privately chooses an e�ort level
0 ≤ ei ≤ 1, and receives a private signal with accuracy level pi = p (ei, ti), where p is an
increasing function (in both parameters), and it is concave in the e�ort level ei. The payo�
of each agent is H − (H − L) · ei if the signal he followed was correct, and L − (H − L) · ei
otherwise. The rest of the model is the same as the basic model.

Let pti ∈ [0, 1] be the accuracy level that maximizes p (ei, ti) − ei. The distribution of ef-
fectiveness levels ft induces a distribution of maximizing accuracy levels fpt . The following
proposition asserts that our results also hold in this extended model, where fpt replaces fp.

Proposition 12 The extended model with costly signals admits an optimal bias function g∗,
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which is the same as the optimal bias function g∗ of the basic model with fp = fpt.

4.8 Risk-Averse Agents

In the basic model the utility of each agent is equal to

ui (apub) =

H if mq = 1,

L if mq = 0,
and ui (apri) =

H if mi = 1,

L if mi = 0,

and the utility of the principal is a concave function of the average utility of the agents. Thus,
in the basic model the principal is more risk-averse than the agents (for example, when there
is a single agent, the principal's utility is a concave function of the agent's utility), which
may seem implausible in some applications.

However, this assumption can be relaxed without changing the results as follows. We rein-
terpret ui as a monetary payo�, and we allow the the utility of agent i to be any monotone
function of this monetary payo�: hi (ui). Speci�cally, our results (Theorem 4-9) also holds if
each agent has utility function hi (x) that is more concave then the principal's utility h (x).

5 Overcon�dence and Evolutionary Stability

In this section we apply our model in an evolutionary setup (extending Example 3, which were
brie�y discussed in the introduction), explain why overcon�dence is evolutionarily stable, and
discuss the implications of the model in this setup.

5.1 Evolutionary Model

Consider a large population of agents. In each generation, each agent has to choose an action,
and this choice in�uences his �tness (number of o�spring in the next generation). For example,
this may describe choice of occupation, living area, how to provide food for the family, or
how to raise and educate the o�spring.

The unknown state of nature determines an action that is best on average (e.g., being a
�sherman is good due to large �sh population), and for each individual it determines which
action is most-adapted to his characteristics (e.g., Alice has good hunting skills). All agents
receive a public noisy signal on the best action, and each agent privately receives a noisy
signal on his most-adapted action. Each agent obtains high �tness for choosing the best
(on-average) action or for choosing his most-adapted action, and low �tness otherwise (as
formulated in Subsection 4.5).
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The population includes a set of genetic types, and each agent is a member of one of these
types. Each type induces a (possibly random) con�dence bias function g for its members. It is
well known (Lewontin and Cohen, 1969; Mcnamara, 1995; Robson, 1996) that in the long run
the type that maximizes the expectation of the geometric mean of the �tness will prevail the
population. This is equivalent to maximizing the expected logarithm of the average �tness
of its members.

This �ts our model as follows. Each agent is an individual with utility (�tness):

ui =

H if ai ∈ {abest, ai−adapted} ,
L otherwise,

and the principal (type) has utility u = E
(
ln
(

1
N

∑
i ui

))
, where the sum is taken over all

its members. In this setup, our main results show that the unique evolutionarily stable type
induces its members to be overcon�dent (in order to resolve the con�ict of interest between
an individual who maximizes his �tness, and a gene is interested in diversi�cation among its
members).

5.2 Levels of Overcon�dence in Di�erent Cultures

Yates et al. (2002) report substantial di�erences in the levels of observed overcon�dence in
di�erent cultures. They summarize results from several studies, and show that Asians tend
to present more overcon�dence then Westerners (in the sense of overestimating the accuracy
of private information).

The above evolutionary model describes a society where the state of nature uniformly in�u-
ences all agents (that is the best action is the same for all agents). Alternatively, one can
think of societies in which the best action may di�er among di�erent subgroups (such as
tribes, or geographical area). This can be modeled, for example, by making the best actions
of di�erent agents correlated, but not necessarily the same. One can show, that lowering the
correlation induces less concave gene's utility. By Theorem 9, this causes individuals to be
less overcon�dent.

Such di�erences can be explained by our model, as the result of di�erent evolutionary histo-
ries. Speci�cally, our model predicts that in di�erent societies people would present di�erent
levels of overcon�dence, based on:

• The typical accuracy of private information (higher probability to receive noisier private
signals induces more overcon�dence).
• The typical potential gain (higher potential gain D = H−L

L
induces more overcon�dence).

Remark 13 Our evolutionary model describes a society where the state of nature uniformly
in�uences all agents; that is the best action is the same for all agents. Alternatively, one
can think of societies in which the best actions of di�erent agents are correlated, but not
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necessarily the same. One can show, that lowering the correlation between the best actions of
di�erent agents, induces a less concave gene's utility. By Theorem 9, this causes individuals
to be less overcon�dent.

5.3 Decreasing Overcon�dence for p > 0.5

In most of the experimental literature participants are asked to choose one of two possible
answers for a question, and estimate the probability (from 50% to 100%) that they had
answered the question correctly (see, e.g., Lichtenstein, Fischho� and Phillips, 1982). These
papers suggest that overcon�dence is decreasing with the di�culty for every p > 0.5.

The following �gures demonstrate that a similar behavior is induced in our model for plausi-
ble private signal accuracy distributions fp (and any value of the potential gain D). Figure 6
presents three Beta distributions for the accuracy of the private signal in the evolutionary his-
tory: 1) uniform distribution (α = 1, β = 1, expectation - 50%), 2) single-peaked distribution
around 20% (α = 2, β = 5, expectation - 29%), and 3) decreasing distribution (α = 1, β = 3,
expectation - 25%). Figure 7 shows the induced overcon�dence from these three distribu-
tions (for potential gain D = 2, qualitative results are insensitive to the value of D). The
uniform distribution induces overcon�dence which slightly increases between 50%-60%, and
then monotonically decreasing in the accuracy level p (that is, decreasing in the di�culty
level). The other two distributions are approximately decreasing for every p > 50%.

5.4 False Certainty E�ect

Fischho�, Slovic and Lichtenstein (1982) experimentally demonstrate the false certainty ef-
fect. Participants in their experiments were asked to choose the most likely answer for a
general-knowledge question, and then to indicate their degree of certainty that the answer
they had selected was correct. Across several di�erent question and response formats, partic-
ipants underestimated the error probability of seemingly easy questions: 1) the error proba-
bility of 10% of the questions was estimated to be extremely low (less than 1:1,000), while
the true error probability was approximately 10%, and 2) the error probability of other 10%
of the questions was estimated as 1% while the true error probability for these questions
was approximately 20%, Participants had su�cient faith in their con�dence judgments to be
willing to stake money on their validity.

As shown earlier (Theorem 9) such an e�ect can emerge in our model for relatively high
potential gains. For example, Figure 8 shows the perceived error probability and the true
error probability for potential gain D = 30, and for three prior beta distributions for the
accuracy of the private signals: 1) uniform distribution (α = 1, β = 1, expectation - 50%),
2) single-peaked distribution around 20% (α = 2, β = 5, expectation - 29%, see �gure 6),
and 3) single-peaked symmetric distribution (α = 3, β = 3, expectation - 50%). The �gure
demonstrates the false certainty e�ect in our model, especially for the two single-peaked
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Figure 6. Examples for Plausible Private Signal Accuracy Beta Distributions

Figure 7. Induced Overcon�dence for Plausible Accuracy Distributions

distributions: when the true error probability is 20% the perceived error probability is 1-2%
(5% for the uniform distribution), and when the true error probability is 10% the perceived
probability is less than 0.5% (1% for the uniform distribution).

Our assumption that the potential gain is high (30 - i.e., a good action yields 30 times more
�tness than a bad one) may seem too extreme. However, one can extend our results into
a setup where the the potential gain D is a random variable, and that its distribution has
some positive small weight on high values. The optimal D-dependent bias function g∗ (p|D)
depends on the realization of D. In many situations it seems plausible to assume that each
type induces a single bias function g∗ (p) for all values of D because either: 1) it is too

27



Figure 8. Perceived vs. True Error Probability (D = 30)

complicated to induce numerous bias functions g∗ (p|D), or 2) individuals do not know the
realization of the potential gain when they choose their actions. Observe that for relatively
low levels of potential gain D and low error probabilities (high p-s) the di�erence in the
long-run type's utility from either choosing the private or the public signal is small (both
yield high payo�). However, when the potential gain D is high, the utility of the type is
substantially in�uenced by the individual's choice, even when the error probability is low.
Thus, for low error probabilities, the single optimal con�dence bias function g∗ (p) would be
close to the value of g∗ (p|D = D) of a high realization of D.

6 Examples

In this section we present a few examples to demonstrate the applicability of our model in
economic interactions. In each example we identify the risk-averse principal and the agents,
and sketch the interaction between them. The �rst two examples were brie�y discussed in
the introduction.

Our model shows that overcon�dence can resolve con�ict of interests between principal and
agents. This con�ict can also be resolved by giving the agents appropriate monetary incen-
tives (e.g., a higher payo� for following the private signal). Thus, in order to demonstrate
the plausibility of our model, we also shortly discuss the di�culties in implementing such
monetary incentives in these examples.
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6.1 CEO and Intermediate Managers (Example 1)

Consider a �rm that operates in several markets, and its operation in each market is managed
by a di�erent agent (intermediate manager). The success of the �rm in each market depends
on the actions of the agent. For example, the �rm operates in several regions, each agent
is the manager in charge of the operation in one of these regions, and success depends on
his marketing strategy. A marketing strategy has higher success probability if it either �ts
the national trend in consumer's preferences, or by being well adapted to the local trend
in the region. Alternative examples are: 1) each agent is a product manager of a �rm that
manufactures several products; 2) each agent is an editor (or a producer) of a publishing
company (or a �lm studio), and 3) each agent is a researcher in a research and development
department of a �rm or a non-for-pro�t organization.

The payo� of each agent is an increasing (possibly concave) function of the �rm's pro�t is
in his market. The payo� of the CEO is an increasing concave function of the total pro�t of
the �rm in all the markets (that is, the CEO is risk-averse with respect to the total pro�t).
Applying our model to this setup, shows that the CEO would prefer to hire overcon�dent
intermediate managers.

The CEO could also solve the con�ict of interests with agents by appropriate monetary incen-
tives (bonus policy). However, implementation of such a policy would require the agreement
of the �rm's shareholders. If the shareholders are risk-natural (for example due to having a
diversi�ed portfolio), they would not approve such a policy. On the other hand, the choice of
overcon�dent agents can be done by the CEO without formally informing the shareholders. In
addition, there are situations in which the agents are not employees of the �rm. For example,
they might be independent local distributors, and competition with other manufacturers may
restrict the plausible contracts between the manufacturer and the distributors, such that the
distributor's payo� must be highly correlated with the local pro�t.

6.2 Investor and Entrepreneurs (Example 2)

Consider an investor (the principal, an angel investor or a manager of a venture capital
fund) who invests money in several entrepreneurs - founders of startup companies. Each such
entrepreneur (agent) receives high payo� if his startup succeeds and low payo� otherwise. The
investor has a concave increasing utility that depends on the number of successful startup
companies (diminishing marginal payo� from successes). When the investor interviews his
entrepreneurs (before choosing them), he obtains a signal on their con�dence-bias.

The probability of success of each startup company depends on the product's design. For
concreteness, consider the case where the product is a software, and success depends on the
platform in which the software is developed to (e.g., member-restricted web site, Smartphone
application, social network, tablet PC application, etc.). During the software development
phase (after the investor already chose his entrepreneurs) everyone receives a noisy public
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signal which platform is more likely to be �hot� (best), and each entrepreneur receives a
private signal which platform is most-adapted to the special characteristics of his software.

In this situation there is a con�ict of interest between the investor who wishes to diversify risk
among the di�erent entrepreneurs, and the entrepreneur who only wishes to maximize his
probability of success. This con�ict can be resolved if the investor chooses overcon�dent en-
trepreneurs. Solving this con�ict with monetary incentives to calibrated entrepreneurs would
be expensive: if each entrepreneur holds a large share of his startup company, then only very
large monetary incentives would encourage him to follow a nosier private signal.

Our model presents a new explanation why entrepreneurs tend to have high levels of over-
con�dence (see, e.g., Arnold C. Cooper, Woo, and Dunkelberg, 1988). In addition, it implies
that entrepreneurs in di�erent areas would present di�erent levels of overcon�dence. Speci�-
cally, entrepreneurs in areas in which typical investors are individuals and small area-speci�c
funds would tend to be more overcon�dent, than entrepreneurs in areas in which the typical
investors are large multi-area funds or the government.

Our result does not depend on the assumption that there is a single investor. It can be
extended to a setup where there are many (risk-averse) investors and many entrepreneurs.
Due to risk aversion, each investor would divide his money among several entrepreneurs, and
the qualitative result would remain the same: all investors prefer to invest in overcon�dent
entrepreneurs.

6.3 Overcon�dence and Social Welfare

Consider a society, where each agent may act by either following a public signal or a private
signal. This action in�uences agent i's productivity xi: high output if he followed a correct
signal and low output otherwise. The payo� of each agent is a function ui = h

(
xi,
∑
j xj

)
of his output xi and the total output

∑
j xj. The function h is assumed to be (strictly)

increasing and concave in both parameters. For example, this is the case if a �xed amount of
each agent's output is taxed and is being used for producing a public good. Alternatively, it
might be that the output of each agent has a direct positive externality on the other agents.

Calibrated agents (without con�dence-bias) would follow the public signal too often, and ob-
tain a Pareto-ine�cient outcome, in which the variance of the total productivity

∑
j xj is too

high. Applying our results to this setup shows that if all agents are moderately overcon�dent,
then they can achieve a Pareto-e�cient outcome, which is Pareto-superior with respect to
the outcome induced by calibrated agents. This may explain development of social norms in
favor of moderate overcon�dence (e.g., �self trust is the �rst secret of success�, Ralph Waldo
Emerson, 1803-1882).
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A Proofs

A.1 Proof of Theorem 4

Theorem 4 There exists a unique optimal bias function g∗, which induces the �rst-best
payo�, with the following properties:

(1) g∗ is continuous, g∗ (0) = 0, and g∗ (1) = 1.

(2) g∗ is increasing: dg
∗(p)
dp

> 0 for every 0 < p < 1.

(3) g∗ (p) > p for every 0 < p < 1 (overcon�dence).

PROOF. The proof includes two parts. The �rst part shows that the �rst-best outcome of
the principal can be approximately induced by a bias function. The second part characterizes
this optimal bias function g∗, and shows its uniqueness.

Approximating the �rst-best payo� by a bias function

We begin by dealing with the ��rst-best� case in which the principal receives all the signals
(pi)i∈I and chooses the actions of all the agents. Without loss of generality the �rst-best
strategy is a function φ that chooses a threshold p = φ (q; p1, ...,pn), such that each agent
i with higher (lower) accuracy level pi ≥ p (pi < p) follow the private (public) signal. The
�rst-best expected payo� is equal to:

h

(
L+ (H − L) ·

(
# {i|pi < p}

n
+

∑
pi≥p pi
n

))

if the public signal is correct, and equal to

h

(
L+ (H − L) ·

(∑
pi≥p pi
n

))

otherwise. To simplify notation let f = fp and F = Fp. By the law of the large numbers for
su�ciently large number of players (n) with high probability:

# {i|pi < p}
n

≈ F (p) ,

and ∑
pi≥p

pi ≈
ˆ 1

p

x · f (x) dx.

Thus, the expected payo� of the �rst-best action pro�le is well approximated by:
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u= q · h
(
L+ (H − L) ·

(
F (p) +

ˆ 1

p

x · f (x) dx

))
(A.1)

+ (1− q) · h
(
L+ (H − L) ·

ˆ 1

p

x · f (x) dx

)
+ o (ε) .

Consider the bias function g (p) = g∗ (p) that is de�ned as follows: p = g−1 (q) is the threshold
that maximizes Eq. A.1 (neglecting the error term o (ε)). By the above arguments, such bias
function ε-induces the �rst-best payo�.

Characterizing the unique optimal bias function g∗ (p)

We now calculate the value of p = (g∗)−1 (q) that maximizes Eq. A.1 (neglecting the error
term o (ε)). One can verify that α (0) = 0 and α (1) = 1. For every 0 < q < 1 we �nd
p = (g∗)−1 (q) by derivation:

du

dp
= q · h′

(
L+ (H − L) · F (p) +

ˆ 1

p

x · f (x) dx

)
(f (p)− p · f (p)) (H − L)

+ (1− q) · h′
(
L+ (H − L) ·

ˆ 1

p

x · f (x) dx

)
(−p · f (p)) (H − L) .

Assuming an internal solution (du
dp

= 0) yields:

h′
(
L+ (H − L) ·

´ 1

p
x · f (x) dx

)
h′
(
L+ (H − L) ·

(
F (p) +

´ 1

p
x · f (x) dx

)) =
q − q · p
p− q · p

. (A.2)

The fact that h′ > 0 (increasing) and h′′ < 0 (concavity) implies that the left hand-side
(l.h.s.) of Eq. A.2 is a strictly increasing function of p. One can verify that the right-hand
side (r.h.s.) is a strictly decreasing function of p, and that for small enough p the r.h.s. is
larger than the l.h.s., while for p = 1 the l.h.s. is larger than the r.h.s. . Thus for each
0 < q < 1 there is a unique solution to Eq. A.2 0 < p = (g∗)−1 (q) < 1, which is a continuous
function of q.

The fact that the l.h.s. is always larger than 1 (due to the concavity of h) implies that
g−1 (q) < q for every 0 < q < 1 (the overcon�dence property). Increasing q by δ > 0 while
holding p constant, would not change the l.h.s. of Eq. A.2, while the r.h.s. would increase.
This implies that (g∗)−1 (q + δ) > (g∗)−1 (q) (because the l.h.s. is decreasing in p), and thus
g−1 (q) is a strictly increasing function of q.

One can verify that du
dp
> 0 for every p < (g∗)−1 (q), and du

dp
< 0 for every p > (g∗)−1 (q).

Thus, any other bias threshold p 6= (g∗)−1 (q) would yield a strictly lower expected payo�.
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The above arguments show that the pro�le in which all agents have bias g∗ induces (up to ε)
the �rst-best outcome for the principal (and thus it is ε-optimal), that g∗ has all the required
properties (continuous, increasing and overcon�dence), and that g∗ is unique in the following
sense: any other bias function g̃ such that g̃ 6= g∗ on a set with a positive Lebesgue measure
yields a strictly lower payo�, assuming the number of agents is su�ciently large.

A.2 Proof of Theorem 6

Theorem 6 Let (gi)i∈I be an heterogeneous pro�le. Then there is k0 such that for every
k ≥ k0, there is an homogeneous pro�le that induces a strictly better outcome than (gi)i∈I
in the game k · |I| with agents.

PROOF. For simplicity of notation let pi (q) = (gi)
−1 (q). Let g̃ be the following bias func-

tion (homogeneous bias pro�le): for each q ∈ [0, 1] let p̃ (q) = (g̃) (q)−1 be the unique solution
to the following equation:

F (p̃ (q)) =
∑
i∈I

1

n
(F (pi (q)))

That is, g̃ is a bias function that averages the heterogeneous pro�le (gi)i∈I .

For each q, the payo� of the heterogeneous pro�le (gi)i∈N , given that the accuracy of the
public signal q is equal toq is:

h

(
L+ (H − L) ·

(
# {i|pi < pi (q)}

n
+

∑
pi≥pi(q) pi

n

))

if the public signal is correct, and it is

h

(
L+ (H − L) ·

(∑
pi≥pi(q) pi

n

))

otherwise. The expected payo� of (gi)i∈N conditional on q = q is equal to

h

L+ (H − L) ·

∑i∈I F (pi (q))

n
+

∑
i∈I
´ 1

pi(q)
xf (x) dx

n




if the public signal is correct, and it is equal to
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h

L+ (H − L) ·


∑
i∈I
´ 1

pi(q)
xf (x) dx

n




otherwise. The expected payo� of the homogeneous bias pro�le g̃ is

h

(
L+ (H − L) ·

(
F (p (q)) +

ˆ 1

p̃(q)

xf (x) dx

))

if the public signal is correct, and equal to

h

(
L+ (H − L) ·

(ˆ 1

p̃(q)

xf (x) dx

))

otherwise. As F (p (q)) =
∑
i∈I

1
n

(F (pi (q))), the homogeneous pro�le has an higher expected
payo� if

1

n

∑
i∈I

ˆ 1

pi(q)

xf (x) dx <

ˆ 1

p̃(q)

xf (x) dx. (A.3)

For simplicity of notation let p̃ = p̃ (q) and pi = pi (q). Eq. A.3 yields:

1

n

∑
i∈I

(ˆ 1

pi

xf (x) dx−
ˆ 1

p̃

xf (x) dx

)
< 0.

This is equivalent to: 17

1

n

∑
i∈I

ˆ p̃

pi

xf (x) dx < 0,

which is equivalent to:

1

n

∑
i∈I

(F (p̃)− F (pi)) · E (p|min (pi, p̃) ≤ p ≤ max (pi, p̃)) < 0. (A.4)

Observe that:
1

n

∑
i∈I

(F (p̃)− F (pi)) = 0,

17 Using the notation that
´ b
a f (x) dx = −

´ a
b f (x) dx when b < a.
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and that E (p|min (pi, p̃) ≤ p ≤ max (pi, p̃)) is strictly increasing in pi and thus strictly de-
creasing in (F (p̃)− F (pi)). This implies that Inequality A.4 holds.

The above arguments show that for each q such that mini (gi)
−1 (q) < maxi (gi)

−1 (q), g̃ has
higher expected value than (gi)i∈I , conditional on q = q. The fact that (gi)i∈I is an heteroge-

neous bias pro�le (i.e., that mini (gi)
−1 (q) < maxi (gi)

−1 (q) in a set with positive Lebesgue
measure), implies that g̃ has higher expected value than (gi)i∈I , without conditioning on the
value of q. By the law of large numbers, if the number of agents is su�ciently large then it
implies that with high probability g̃ would have induce strictly larger payo� then (gi)i∈I , and
thus would be more preferred by the principal.

A.3 Proof of Proposition 7

Proposition 7 Assume h1 = ψ ◦ h2, where ψ is concave and increasing. Let g∗1 (g∗2) be the
unique optimal bias function given that the principal's utility is h1 (h2). Then, g

∗
1 (p) > g∗2 (p)

for every 0 < p < 1.

PROOF. The expected payo� of a principal with utility ψ ◦ h is:

u= q · ψ
(
h

(
L+ (H − L) ·

(
F (p) +

ˆ 1

p

x · f (x) dx

)))

+ (1− q) · ψ
(
h

(
L+ (H − L) ·

ˆ 1

p

x · f (x) dx

))
+ o (ε) .

Looking for an internal solution (du
dp

= 0) yields:

ψ′ (h (Θ)) · h′ (Θ)

ψ′ (h (Θ + (H − L) · F (p0))) · h′ ((Θ + (H − L) · F (p0)))
=
q − q · p
p− q · p

. (A.5)

Where Θ = L+ (H − L) ·
´ 1

p
x · f (x) dx. Observe that for any 0 < p < 1 the l.h.s. of Eq. A.5

is larger than the l.h.s. of Eq. A.2 due to the concavity of ψ. This implies that q = g∗ (p) has
to be larger (as the r.h.s. is an increasing function of q). That is, a more risk-averse principal
induces higher level of overcon�dence.

A.4 Proof of Theorem 8

Theorem 8 Assume that the principal's utility h satis�es strictly decreasing absolute risk-
aversion. That is, Arrow-Pratt coe�cient of absolute risk-aversion rA (x) = −h′′(x)

h′(x)
is a de-
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creasing function of x. Then higher level of optimal overcon�dence (g∗2 (p) > g∗1 (p) for every
0 < p < 1) is induced by:

(1) Higher payo� for success: H2 > H1.
(2) Lower payo� for failure: L2 < L1 .
(3) Harder tasks (less accurate private signals): If p2 has �rst order stochastically dominance

over p1.

We begin by showing the following simple lemma:

Lemma 14 fa (y) = h′(y)
h′(y+a)

is a strictly decreasing function of y for each a > 0.

PROOF. (Lemma 14) Observe that the assumption that h satis�es decreasing absolute
risk-aversion implies that for every y, a > 0:

rA (y) > rA (y + a)⇔ −h
′′ (y)

h′ (y)
> −h

′′ (y + a)

h′ (y + a)

⇔ h′′ (y)

h′ (y)
<
h′′ (y + a)

h′ (y + a)
⇔ h′′ (y) · h′ (y + a)− h′′ (y + a) · h′ (y) < 0.

Observe that:

f ′a (y) =
h′′ (y) · h′ (y + a)− h′′ (y + a) · h′ (y)

(h′ (y + a))2 .

The above arguments prove that fa (y) = h′(y)
h′(y+a)

is strictly decreasing.

PROOF. (Theorem 8) We now apply Lemma 14 to prove each of the claims in Theorem 8:

(1) Comparing the l.h.s. of Eq. A.2 in the case where H2 > H1 yields:

h′
(
L+ (H2 − L) ·

´ 1

p
x · f (x) dx

)
h′
(
L+ (H2 − L) ·

(
F (p) +

´ 1

p
x · f (x) dx

)) >
h′
(
L+ (H2 − L) ·

´ 1

p
x · f (x) dx

)
h′
(
L+ (H1 − L) · F (p) + (H2 − L) ·

(´ 1

p
x · f (x) dx

)) >
h′
(
L+ (H1 − L) ·

´ 1

p
x · f (x) dx

)
h′
(
L+ (H1 − L) ·

(
F (p) +

´ 1

p
x · f (x) dx

)) .
The �rst inequality holds due to the concavity of h, and the second inequality holds due
to Lemma 14, with y1 = L+(H1 − L)·

´ 1

p
x·f (x) dx, y2 = L+(H2 − L)·

´ 1

p
x·f (x) dx > y1,
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and a = (H1 − L) · F (p). Thus, for each 0 < p < 1 the l.h.s. of Eq. A.2 is larger for H2,
and this implies that the r.h.s. has to be larger, and thus q2 = g∗2 (p) > g∗1 (p) = q1.

(2) Comparing the l.h.s. of Eq. A.2 in the case where L2 < L1 yields:

h′
(
L2 + (H − L2) ·

´ 1

p
x · f (x) dx

)
h′
(
L2 + (H − L2) ·

(
F (p) +

´ 1

p
x · f (x) dx

)) >

h′
(
L2 + (H − L2) ·

´ 1

p
x · f (x) dx

)
h′
(
L2 + (H − L1) · F (p) + (H − L2) ·

(´ 1

p
x · f (x) dx

)) >
h′
(
L1 + (H − L1) ·

´ 1

p
x · f (x) dx

)
h′
(
L1 + (H − L1) ·

(
F (p) +

´ 1

p
x · f (x) dx

)) .
The �rst inequality holds due to the concavity of h, and the second inequality holds
due to Lemma 14, with y1 = L1 + (H − L1) ·

´ 1

p
x · f (x) dx = H ·

´ 1

p
x · f (x) dx −

L1

(
1−
´ 1

p
x · f (x) dx

)
, y2 = L2 + (H − L2) ·

´ 1

p
x · f (x) dx − H ·

´ 1

p
x · f (x) dx −

L2

(
1−
´ 1

p
x · f (x) dx

)
> y1, and a = (H − L1) · F (p). Thus, for each 0 < p < 1

the l.h.s. of Eq. A.2 is larger for L2, and this implies that the r.h.s. has to be larger, and
thus q2 = g∗2 (p) > g∗1 (p) = q1.

(3) Comparing the l.h.s. of Eq. A.2 in the case where p2 has �rst order stochastically dom-
inance over p1 (i.e., F1 (p) ≤ F2 (p) for every p yields):

h′
(
L+ (H − L) ·

´ 1

p
x · f2 (x) dx

)
h′
(
L+ (H − L) ·

(
F2 (p) +

´ 1

p
x · f2 (x) dx

)) =

h′
(
L+ (H − L) ·

´ 1

p
(1− F2 (x)) dx

)
h′
(
L+ (H − L) ·

(
F2 (p) +

´ 1

p
(1− F2 (x)) dx

)) >
h′
(
L+ (H − L) ·

´ 1

p
(1− F2 (x)) dx

)
h′
(
L+ (H − L) ·

(
F1 (p) +

´ 1

p
(1− F2 (x)) dx

)) >
h′
(
L+ (H − L) ·

´ 1

p
(1− F1 (x)) dx

)
h′
(
L+ (H − L) ·

(
F1 (p) +

´ 1

p
(1− F1 (x)) dx

)) .
The �rst inequality holds due to the concavity of h, and the second inequality holds
due to Lemma 14, with y1 = L + (H − L) ·

´ 1

p
(1− F1 (x)) dx, y2 = L + (H − L) ·´ 1

p
(1− F2 (x)) dx > y1, and a = (H − L) · F1 (p). Thus, for each 0 < p < 1 the l.h.s.

of Eq. A.2 is larger for F2, and this implies that the r.h.s. has to be larger, and thus
q2 = g∗2 (p) > g∗1 (p) = q1.
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A.5 Proof of Theorem 9

Theorem 9 Assume that the principal has a CRRA utility function with parameter θ.
Then:

g∗ (p) =
Bp

1− p+Bp
, where B =

1 +
D · Fp (p)

1 +D ·
´ 1

p
x · fp (x) dx

φ ,
and it satis�es the following properties:

(1) overcon�dence (g∗ (p)− p) is strictly increasing in the potential gain D = H−L
L

.
(2) The ratio between the perceived and the true probability that the private signal is

incorrect (1−g(p)
1−p ) is strictly decreasing in p, and it converges to

(
H
L

)φ
as p converges to

1.

PROOF. We begin by proving the above formula for g∗ (p).

Placing h′ (x) = x−φ in Eq. (A.2) yields:

(
L+ (H − L) ·

´ 1

p
x · f (x) dx

)−φ
(
L+ (H − L) ·

(
F (p0) +

´ 1

p
x · f (x) dx

))−φ =
q − q · p
p− q · p

⇒

 L
L

+ (H−L)
L
·
(
F (p) +

´ 1

p
x · f (x) dx

)
L
L

+ (H−L)
L
·
´ 1

p
x · f (x) dx

φ =
q − q · p
p− q · p

⇒

1 +

(
H−L
L

)
· F (p)

1 +
(
H−L
L

)
·
´ 1

p
x · f (x) dx

φ =
q − q · p
p− q · p

.

Substituting D = H−L
L

gives:

1 +
D · F (p)

1 +D ·
´ 1

p
x · f (x) dx

φ =
q − q · p
p− q · p

. (A.6)

Let B be de�ned as follows:

B = B (p, f,D) =

1 +
D · F (p)

1 +D ·
´ 1

p
x · f (x) dx

φ .
Observe that: 1) B > 1, 2) B is increasing in p, and 3) when p→ 1 B converges to (1 +D)φ

(and dB
dp

converges to 0). Placing B in Eq. (A.6) yields:

B =
q − q · p
p0 − q · p

⇒ Bp− qBp = q − qp.
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Isolating q gives:

q =
Bp

1− p+Bp
.

Substituting q by g∗ (p) gives:

g∗ (p) =
Bp

1− p+Bp
.

We continue by proving the two properties:

(1) We have to show that g∗ (p) is increasing in the potential gain D. Observe that the l.h.s.
of Eq. (A.6) is increasing in D because:

d

dD

 D · F (p)

1 +D ·
´ 1

p
x · f (x) dx

 =

F (p)
(
1 +D ·

´ 1

p
x · f (x) dx

)
−D · F (p)

´ 1

p
x · f (x) dx(

1 +D ·
´ 1

p
x · f (x) dx

)2 =

F (p)(
1 +D ·

´ 1

p
x · f (x) dx

)2 > 0.

This implies that p = α (q) is strictly decreasing in D, and thus g∗ (p) = α−1 (p) is
strictly increasing in D.

(2) Observe that 1− g (p) is equal to:

1− g (p) =
1− p

1 + p (B − 1)
.

Thus 1−g(p)
1−p is equal to:

1− g (p)

1− p
=

1

1 + p (B − 1)
,

which is decreasing in p, and when p→ 1 it converges to:

1

B
=

1

(1 +D)φ
=
(
H

L

)φ
.

A.6 Proof of Proposition 10

Proposition 10 For each n ≥ 1 and k ≥ 2 the principal can induce a strictly better outcome
when the number of agents is k · n than when it is n.

PROOF. Let (gi)i∈I be a bias pro�le in the game with n = |I| agents. Recall that for each
agent i ∈ I, ui is the random payo� of agent i with bias function gi, and that the principal's
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payo� is h
(

1
n

∑
i∈I ui

)
. Consider (gi)i∈I as a pro�le in the game with k ·n agents (where each

k agents have one of the bias functions gi). This pro�le induces the following payo�:

h

 1

n

∑
i∈I

1

k

k∑
j=1

u(i−1)·k+j

 ,
where for each i, the variables

(
u(i−1)·k+j

)
j=1,...,k

are identically distributed. Observe that
1
n

∑
i∈I

1
k

∑k
j=1 u(i−1)·k+j second-order stochastically strictly dominates 1

n

∑
i∈I ui. By the con-

cavity of h, it implies that the principal strictly prefers the outcome in the game with k · n
agents. Thus, any outcome in the game with n agents is strictly dominated by an outcome
in the game with k · n agents.

A.7 Proof of Proposition 12

Proposition 12 The extended model with costly signals admits a unique optimal bias
function g∗, which is the same as the optimal bias function g∗ of the basic model with
fp = fpt .

PROOF. We begin by calculating the �rst-best pro�le in a game with many agents n >> 1.
Without loss of generality for each public accuracy q ∈ [0, 1], there is some e�ectiveness value
t0 = α (q) such that the optimal payo� can be induced by all agents using the same threshold
strategy: 1) agents with low e�ectiveness (ti < t0) do not invest any e�ort and follow the
public signal, and 2) agents with high e�ectiveness (ti ≥ t0) invest some e�ort and follow the
private signal.

Consider an agent with high e�ectiveness: t ≥ t0. His expected payo� from investing e�ort
e is L + (H − L) · (p (e, t)− e). This is maximized in e∗t that satis�es

d(p(e,t))
de

= 1 (a unique
maximizer exists due to the concavity of p (e, t)). Let p∗t = p (e∗, t). For large enough n, if all
agents with high e�ectiveness invest e�ort e∗v, it ε-maximizes the principal's payo� (by the
law of large numbers).

Let p0 = p∗t0 be the accuracy level of an agent with threshold e�ectiveness value t0. The
choice of an optimal threshold t0 is equivalent to the problem solved in Subsection 4.3 -
�nding the optimal accuracy threshold p0. Thus the optimal bias function g∗ of the basic
model (Subsection 4.3) is also optimal in the extended model (with fp = fpt).
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