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Abstract

We de�ne a continuous index of strategic stability, p�stability, which
requires equilibrium to be the unique outcome compatible with common
knowledge of rationality and common knowledge of p�beliefs (beliefs that
put probability at least p on the equilibrium pro�le). We show that every
equilibrium (within a large class) is p-stable for some p < 1 and justify,
in smooth settings, the intuition that the slope of the best response map
is related to the stability of equilibrium. We show that adding incom-
plete information on fundamentals could decrease the degree of strategic
stability. In two applications to large markets we (i) show that a unique
equilibrium globally unstable (under tâtonnement dynamics) has, never-
theless, a measure of strategic stability, (ii) characterize the conditions
under which enhanced equilibrium e¢ ciency results in decreased strategic
stability.
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1 Introduction

A common intuition relates the stability of equilibrium to the slope of best-
response resulting in a "stable/unstable" typology. In this paper, we want to
de�ne a continuous index for stability that can be assigned to each equilibrium
within a large class of games. Our aim is to obtain a stability index that is
less coarse that the usual "stable/unstable" typology. Nevertheless, we require
that our stability index, in smooth applications, justi�es the intuition that the
degree of equilibrium stability relates to the slope of the best response map.
Our underlying stability notion is one that requires the equilibrium to be

robust to strategic uncertainty (and not uncertainty on fundamentals). Our
concept is de�ned via an iterative elimination process. A Nash equilibrium is
p�stable if it is the unique rationalizable outcome when all players attach at
least probability p < 1 to the equilibrium strategy. If all players believe a Nash
equilibrium action con�guration to be played with probability one (p = 1),
then, by de�nition, all players only play the Nash equilibrium. When p = 0,
the property that only the Nash equilibrium is played is equivalent to requiring
that the Nash equilibrium con�guration is the unique rationalizable outcome.
Our stability concept requires that only the Nash equilibrium con�guration of
actions be played when p < 1.
We say that a Nash equilibrium is inadmissible if the best-response map is

"vertical at the equilibrium" i.e. a small change in the other players actions
implies a in�nitely large change in any one player�s best response. Our main
result shows that every admissible Nash equilibrium is p�stable for some p < 1.
In a smooth setting we show that the degree of stability is related to the inverse
of the slope of the best-response. Thus, our result generalizes, to models with
a continuum of actions (where individual best-responses may vary continuously
in the actions of other players and/or have empty basins of attraction) and a
continuum of traders, the intuition that in a game with a �nite number of pure
strategies any strict Nash equilibrium is p�dominant (Morris, Rob and Shin
(1995)) and is related to the idea of iterated p�dominance (Tercieux (2006)).
We explore the epistemic conditions for a p-stable equilibrium i.e. we exhibit

(knowledge) assumptions implying that the outcome of the game is a p-stable
equilibrium. We show that, for a given equilibrium, p-stability means that the
equilibrium con�guration of actions is the only outcome compatible with com-
mon knowledge of p-belief of equilibrium and common knowledge of rationality.
This result provides an epistemic motivation for our stability concept and relate
to results obtained elsewhere such as common knowledge of rationality implies
that the outcome is rationalizable (Tan and Werlang (1988)), mutual knowledge
of the payo¤ functions and of rationality, and common knowledge of the conjec-
tures imply Nash (Aumann and Brandenburger (1995)) and common p-belief of
rationality implies p-rationalizability (Hu (2007)).
Next, we develop a "contagion" argument relating strategic stability in the

complete information case to incomplete information by adding payo¤ uncer-
tainty (and informational asymmetry) to the underlying complete information
game. We build an incomplete information game from a collection of complete
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information games where the equilibrium is sometimes (over a non null set of
fundamentals), but not always dominance solvable. In a game with a contin-
uum of actions where the BR map is linear in the mean action, we show that
adding incomplete and asymmetric information on the fundamentals decreases
the degree of stability. The result holds both in an example with strategic com-
plementarities and in an example with strategic substitutabilities. Thus the
"contagion" argument developed here quali�es the point made in the "global
games" literature (Carlsson and Van Damme (1993), Morris, Rob and Shin
(1995), Morris and Shin (1998) amongst many others) where the introduction
of incomplete information increases the degree of stability.
We, then, apply our stability concept to in two models of exchange in large

markets. First, we use our concept to study the stability of equilibrium prices
and allocations in the exchange economy studied by Scarf (1960). In this econ-
omy, the unique competitive equilibrium is globally unstable under tâtonnement
dynamics. Modelling exchange explicitly via the Shapley Window model (Sahi
and Yao (1989), Codognato and Ghosal (2000)), we show that the actions of
each trader at a Nash equilibrium supporting to the unique competitive equilib-
rium is p-dominant and hence p-stable for some 0 < p < 1. Therefore, although
the equilibrium outcome fails to be globally stable under tâtonnement dynam-
ics, it does have a measure of strategic stability1 . Second, using a modi�ed
market game a la Shapley-Shubik (Shapley-Shubik (1977)), we characterize the
conditions under which enhanced equilibrium e¢ ciency, by getting rid of trading
frictions, lowers the degree of strategic stability i.e. the minimum p for which
equilibrium is p�stable increases in value.
The next section develops the stability concept, characterizes the class of

equilibria which are p stable for some p < 1 and relates the index of stability
to the slope of the best-response in the one dimensional, smooth case. Section
3 is devoted to the epistemic foundations of the stability concept while section
4 examines how strategic stability is a¤ected by uncertainty on fundamentals.
In section 5, we study two applications of our stability concept to exchange
economies. The last section concludes and the appendix contains some technical
material not included in the main text.

2 The stability concept

In this section, we begin by describing the underlying strategic framework. We
then de�ne p�stability and state the conditions under which a Nash equilibrium
is p-stable.

2.1 The model

The underlying strategic framework is due to MasColell (1984).

1Although, clearly, the Nash equilibrium actions supporting the unique competitive equi-
librium pro�le fails to be the unique rationalizable outcome (i.e. 0�stable).
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Let A be a non-empty compact metric space of actions and �(A) be the
compact and metrizable set of Borel probability measures on A endowed with
the weak convergence topology (which is metrizable using the Prohorov metric).
Let UA be the set of continuous utility functions u : A ��(A) ! IR endowed
with the supremum norm, the metric, separable and complete space of player
characteristics. A game with a continuum of players is a Borel measure � on
UA.
For any probability measure � on UA�A, let �u and �a denote the respective

marginal distribution on UA and A respectively.
Let T denote the set of probability measures on UA � A such that �u = �:

�u denotes the set of "strategy pro�les", i.e., a distribution of actions for each
u.
For � 2 T , let B� = f(u; a) : u (a; �a) � u (A; �a)g. The best-response cor-

respondence is a map � : T ! T such that �(�) = f� 0 2 T : � 0(B� ) = 1g, i.e.,
� is the set of "strategy pro�les" putting probability one on the fact that each
player plays a best-response to � .
A Nash equilibrium is a measure �� 2 T such that �� 2 �(��).
Existence result. For a given �, there exists a Nash equilibrium distribu-

tion �� (Theorem 1 in MasColell (1984)).

2.2 p-stability: de�nition

For a �xed equilibrium �� and p 2 [0; 1], a p�belief is a probability distribution
�p = p�

� + (1 � p)� for any � 2 T , i.e., a belief that assigns a probability p to
the equilibrium ��. Let Tp � T denote the corresponding set.
We de�ne an equilibrium �� to be p�stable if the equilibrium distribution

is the only element surviving the iterated elimination of non best-responses to
a p0�belief for all p0 > p. This de�nition relies on a "standard" de�nition of
rationalizable outcomes in a game where the strategy set is restricted to Tp: a
p�stable equilibrium is an equilibrium that is the only rationalizable outcome
in a game with the restricted strategy set Tp.
Formally, we proceed to de�ne p�stability iteratively. Let S0p = Tp and

consider the sequence of sets Snp =
�
�(Sn�1p )

�
\ Tp for n � 1. This sequence is

decreasing and therefore, it converges to a set S1p . Note that �
� 2 S1p .

De�nition 1. A Nash equilibrium �� is p�stable if for all p0 > p, S1p0 =
f��g.
Remarks:
1. We do not require that S1p = f��g for a p�stable equilibrium. In

some classes of games (for example in the smooth one-dimensional case below),
S1p 6= f��g at a p�stable equilibrium.
2. Clearly, when p = 1, Tp = f��g such that every Sn1 and S11 are trivially

equal to f��g. (With a slight abuse of notation, we could say that an equilibrium
is always 1�stable, but this is meaningless).
3. If �� is 0�stable then �� is the unique rationalizable outcome.
4. For any p < p0, p; p0 2 [0; 1], we have that Snp0 � Snp as Tp0 � Tp.

Therefore, S1p0 � S1p and if S1p = f��g then S1p0 = f��g. In particular,
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the set I =
�
p 2 [0; 1] : S1p = f��g

	
is an interval contained in [0; 1]. Clearly,

sup:I = 1. The interesting question is whether inf:I < 1.

2.3 p-stable equilibria

De�ne a best-response correspondence for each u 2 UA to each m 2 �(A) as
B(u;m) = fa 2 A : u (a;m) � u (A;m)g: an action inB(u;m) is a best-response
for u 2 UA to some m 2 �(A).
For each m 2 �(A), consider the set

~UA(m) =

(
u 2 UA : B(u;m) is not single-valued or
lim supm0!m

dA(B(u;m
0);B(u;m))

d�(A)(m0;m) <1

)
:

where dA denotes a distance on A (recall that d�(A)(:; :) denotes the Prohorov
metric on �(A)). Note that for each u 2 ~UA(m), a small change in m induces
an in�nitely large change in best-responses.
Consider a given ��. For every u, denote ku = lim supm!��a

dA(B(u;m);B(u;�
�
a ))

d�(A)(m;��a )
.

De�nition 2. The equilibrium �� of a game � is admissible if �
�
~UA(�

�
a )
�
=

0 and
sup ess
u2UA

ku < +1;

Denote K = sup ess
u2UA

ku. K is the essential upper bound of ku w.r.t. measure �

(that is: the set of u such that ku > K has ��measure 0).

The following lemma2 summarizes three key properties of the Prohorov met-
ric that will be used in the proof of the main result of the paper.

Lemma 1. (i) Consider � = p�� + (1� p) � 0. Then,

d�(A) (�a; �
�
a ) � (1� p) d�(A) (� 0a; ��a ) :

(ii) Consider a Dirac measure �x and a distribution �a 2 �(A). Consider S the
support of �a (the smallest closed set s.t. �a (S) = 1) and d = supy 2 SdA (x; y)
(d is the radius of the smallest ball centered on x that contains S3). Then,

d�(A) (�x; �a) � d:
(iii) Consider �a 2 �(A) de�ned by �a =

R
��f (d�) where f is a probability

distribution on a set of parameters �. Consider another distribution � 2 �(A).
We have

d�(A) (�a; �) � sup ess
�

d�(A) (��; �) :

2We state and prove this lemma for completeness as we are not aware of an explicit proof
of the three properties of the Prohorov metric contained in the lemma and required for the
proof of Proposition 1 below.

3Notice that x may be in S or not.
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Proof. The Prohorov metric is de�ned by:

d�(A) (m; �
�
a ) = inf f" > 0 : m (M) � ��a (M") + " for all Borel subsets M of Ag ;

where M" = fy 2 A=dA (x; y) � " for some x 2Mg.4
(i) For every M , for every " > d�(A) (� 0a; �

�
a ), we have

��a (M) � � 0a (M") + ",

then

(1� p) ��a (M) � (1� p) � 0a (M") + (1� p) ";
��a (M) � p��a (M) + (1� p) � 0a (M") + (1� p) ";
��a (M) � p��a (M") + (1� p) � 0a (M") + (1� p) ":

This implies: d�(A) (�a; ��a ) � (1� p) " and

d�(A) (�a; �
�
a ) � (1� p) d�(A) (� 0a; ��a )

(ii) For a Borel set M s.t. x 2M , for every ", we have �x (M") = 1 and

�a (M) � �x (M") + ":

For a Borel set M that does not intersect S, for every ", we have �a (M) = 0
and

�a (M) � �x (M") + ":

Consider now a Borel set M that does not contain x and that intersects S. For
every " > d, we have that x 2M" (consider a y in S \M) and �x (M") = 1 and

�a (M) � �x (M") + ":

(iii) Consider " > sup ess
�

d�(A) (��; �). For f�almost every �, we have: for
every M

�� (M) � � (M") + ".

Summing over � gives:Z
�� (M) f (d�) �

Z
(� (M") + ") f (d�) = � (M") + ";

as (� (M") + ") does not depend on � and
R
f (d�) = 1. �

We are now in a position to state and prove the main result of the paper.
Proposition 1. For any admissible equilibrium, there is a threshold p̂ < 1

such that the equilibrium is p� stable i¤ p > p̂.
4See Dudley (1989) for this de�nition and other properties of the Prohorov metric not

explicitly mentioned in this paper.
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Proof. There is a neighborhood N � �(A) of ��a such that for ��almost
every u in UA,

8m 2 N; dA (B (u;m) ; B (u; ��a )) � Kd�(A) (m; ��a ) : (1)

Now for each � 2 Tp (with � = p�� + (1� p) � 0), we must have that

8M � A; �a (M) = p��a (M) + (1� p) � 0a (M) ;

It straightforwardly follows from Lemma 1(i) that

d�(A) (�a; �
�
a ) � (1� p) d�(A) (� 0a; ��a ) : (2)

As the Prohorov metric is always bounded by 1, we have d�(A) (� 0a; �
�
a ) � 1 and

d�(A) (�a; �
�
a ) � 1 � p. Then, for p large enough, the following property holds:

the inequality (1) holds for the marginal �a of any distribution � in Tp. From
now on, we consider p such that this property holds.
De�ne the set An (u) � A of actions that are best responses of u to a

distribution of actions �a that is the marginal on A of some � 2 Sn�1p . �
�
Sn�1p

�
contains the distributions � 2 T such that, for �-almost every u, � (An (u) ju) =
1.
For �-almost every u, for every a in An (u), a writes B(u; �a) for some � in

Sn�1p . Inequality (1) writes:

dA(a;B(u; �
�
a )) � Kd�(A)(�a; ��a ):

As � 2 Sn�1p = �
�
Sn�2p

�
\ Tp, � = p�� + (1� p) � 0 for some � 0 2 �

�
Sn�2p

�
.

Inequality (2) implies

dA(a;B(u; �
�
a )) � K (1� p) d�(A)(� 0a; ��a ):

Denote RnA (u) = supa2An(u) dA(a;B(u; �
�
a )) (this is the radius of the smallest

ball containing An (u) and centered on ��A). We have

RnA (u) � K (1� p) d�(A)(� 0a; ��a ):

Denote RnA = sup essu2UA R
n
A (u) for every n. We have

RnA � K (1� p) d�(A)(� 0a; ��a ): (3)

Consider now that by de�nition, for every M , ��a (M) =
R
�� (M ju)� (du). By

admissibility of ��, for ��almost every u, the conditional distribution �� (:ju)
is a Dirac measure �B(��a ;u) on the equilibrium action of u (denoted B (��a ; u)).
By Lemma 1(ii), for every Dirac measure centered on x 2 A,

d�(A)(�
0
a; �x) � sup

y2S
dA (x; y) ; (4)

where S is the support of � 0a (the smallest closed set such that �
0
a (S) = 1).

Then, we have:
d�(A)(�

0
a; �B(��a ;u)) � R

n�2
A (u)
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As ��a =
R
�B(��a ;u)� (du), by Lemma 1(iii),

d�(A)(�
0
a; �

�
a ) � sup ess

u2UA
d�(A)(�

0
a; �B(��a ;u)) � sup

u2UA
ess Rn�2A (u) = Rn�2A :

From Inequality (3), we have

RnA � K (1� p)Rn�2A :

Hence, for p large enough, K (1� p) < 1 and the sequence of RnA tends to 0,
which implies that Snp tends to f��g. We have shown p�stability for p < 1 large
enough. Existence of the threshold follows from Remark 4 above stating that
p�stability implies p0�stability for every p0 > p. �

Heuristically, the idea underlying the proof is as follows. An equilibrium
�� is p�stable if the best-response map, restricted to p�beliefs, generating the
sequence of sets Snp is a contraction. For p close to one, when the equilibrium
�� is admissible, we show that the best-response map, restricted to p�beliefs,
cannot vary much (i.e. in the smooth case, the derivative of the best-response
map, restricted to p�beliefs, is small). If, on the contrary, the equilibrium ��

isn�t admissible, even when restricted to p�beliefs, it can change dramatically
around the equilibrium implying that the preceding step of the argument doesn�t
hold.

2.4 p-stability in the smooth one-dimensional case

To get an intuitive feel for the notion of stability being studied in this paper,
consider a simple, smooth model of strategic interaction where there is a con-
tinuum of agents each whom chooses an action a 2 A (a compact set in IR) to
maximize u (a; �a) (C2, with u00aa < 0) where �a is the average action. Without
loss of generality, A = [�1; 1]. Suppose, there is a (not necessarily) unique Nash
that is interior and is normalized to 0 so that u0a (0; 0) = 0. Denote BR (�a) the
(unique) best response to �a (characterized by u0a (BR (�a) ; �a) = 0). We assume
that the BR map is not vertical at equilibrium (BR0 (0) < +1).

We are now in a position to state the following result:
Proposition 2. There is p̂ < 1 such that the equilibrium is p-stable i¤

p > p̂. If M = sup�a2[�1;1] jBR0 (�a)j < 1, then p̂ = 0. Otherwise, we have:

1� 1

jBR0 (0)j < p̂ < 1�
m

M +m� 1 ; (5)

where

m = inf
a;�a2[�1;1]

u00a�a (a; 0)

u00a�a (a; �a)
2 [0; 1] :

It follows that our stability concept gives a motivation for looking at the
slope of the best response map as a stability index. In particular, if u00a�a is
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constant in �a, then m = 1 and the inequalities (5) become:

1� 1

jBR0 (0)j < p̂ < 1�
1

M
: (6)

To relate p̂ with exogenous variables, use the inequalities (5) and notice that
the implicit functions theorem implies BR0 (0) = �u00a�a (0; 0) =u00aa (0; 0) and

M � sup
a;�a2[�1;1]

����u00a�a (a; �a)u00aa (a; �a)

����
A special case of the model studied so far is the Muth model with a large

number of farmers who have to commit to an output level before selling their
products in a competitive market in Guesnerie (1992). Farmer i maximizes
�q � q2

2Ci (� is the output price). Aggregate supply in this market is given by
S(�) = C� where C =

R
Cidi. Aggregate demand in this market is:

D(�) =

�
A�B� if � � A

B

0; otherwise

Let �� be the competitive equilibrium price. Guesnerie (1992) shows that when
the slope of the best response map B=C < 1, �� is the unique rationalizable
outcome.
Applying Proposition 2 immediately yields that the equilibrium in Gues-

nerie�s model is p�stable i¤ p > max f1� C=B; 0g. Thus, p�stability describes
more precisely the degree of stability of the equilibrium when it is not the unique
rationalizable outcome.

The remainder of the section is devoted to the proof of Proposition 2. The
proof shows that p�stability relies on the best response map BR (p; �a) (best
response to beliefs "p on 0, (1� p)on �a"). When p is close to one, the slope
BR0�a (p; �a) is small enough (whatever a is). The map BR (p; :) is then globally
contracting and p�stability obtains. Intuitively, when p is close to one, the best
response is not very sensible to the value �a and the best response cannot deviate
very much from the equilibrium value 0. This is the condition needed to get
p�stability.

Proof. We �rst give some notation. For every �a in [�1; 1], the best response
BR (p; �a) to beliefs "p on 0, (1� p)on �a" solves:

max
a
pu (a; 0) + (1� p)u (a; �a) :

With the notation of the previous section, an element � in T is such that �u
is a Dirac measure on u. Then, � is characterized by a distribution on A (that
is �a). With a slight abuse of notation, we identify an element � in T with its
marginal �a on A.
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We �rst check the following simple lemma:
Lemma 2. Consider an interval of actions [a�; a+] (0 2 [a�; a+]), an action

that is a best response to some beliefs on [a�; a+] putting at least probability p
on 0 is an action in the interval

�
a0�; a

0
+

�
where

a0� = inf
�a2[a�;a+]

BR (p; �a) and a0+ = sup
�a2[a�;a+]

BR (p; �a) ;

Proof of the lemma. The best response a of a player to belief on [a�; a+]
putting at least probability p on 0 solves a FOC

pu0a (a; 0) + (1� p)
Z
u0a (a; �a) dP (�a) = 0;

where dP is some Borel measure on [a�; a+]. Notice that the LHS of this FOC
is an integral over the family of functions pu0a (a; 0) + (1� p)u0a (a; �a) (indexed
by �a). Furthermore, BR (p; �a) is characterized as the solution of

pu0a (a; 0) + (1� p)u0a (a; �a) = 0:

The lemma follows. �

We are now in a position to de�ne the sequence of sets Snp . To this purpose,
denote a0� = �1 and a0+ = +1 and, for every n � 1, de�ne iteratively the values
an� and a

n
+ in [�1; 1] by

8n � 1; an� = inf
�a2[an�1� ;an�1+ ]

BR (p; �a) and an+ = sup
�a2[an�1� ;an�1+ ]

BR (p; �a) ;

(clearly, 0 2
�
an�; a

n
+

�
and

�
an�; a

n
+

�
�
�
an�1� ; an�1+

�
for every n).

� Tp (that is S0p) is the set of distributions on
�
a0�; a

0
+

�
putting at least

probability p on 0

� An action that is a best response to some beliefs in S0p is an action in�
a1�; a

1
+

�
(from the Lemma above)

� As every player is rational and has beliefs in S0p , the aggregate action is
in
�
a1�; a

1
+

�
. Hence, �

�
S0p
�
is the set of distributions on

�
a1�; a

1
+

�
.

� S1p = �
�
S0p
�
\ S0p is the set of distributions on

�
a1�; a

1
+

�
putting at least

probability p on 0.

A comment about this argument: the key point here is that p has 2 e¤ects
on the transition between Sn�1p and Snp : the "straight" e¤ect that S

n
p is a set

of distributions on a subset X of actions putting at least probability p on one
speci�c action (the equilibrium), and the other e¤ect (on which the iterative
contraction argument relies), that the support X on the distributions in Snp
shrinks with p (X decreases in p, for a given size of the support of Sn�1p ).
We now iterate the argument:
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� If Sn�1p is the set of distributions on
�
an�1� ; an�1+

�
putting at least prob-

ability p on 0, then an action that is a best response to some beliefs in
Sn�1p is an action in

�
an�; a

n
+

�
(from the Lemma above)

� �
�
Sn�1p

�
is then the set of distributions on

�
an�; a

n
+

�
� Snp = �

�
Sn�1p

�
\S0p is the set of distributions on

�
an�; a

n
+

�
putting at least

probability p on 0.

We now characterize the conditions implying that S1p reduces to the equilib-
rium. As

�
an�; a

n
+

�
= BR

�
p;
�
an�1� ; an�1+

��
, S1p reduces to the equilibrium i¤ the

two sequences an� and a
n
+ converge to 0. A necessary condition for convergence

of an� and a
n
+ is that BR (p; :) is locally contracting at 0, that is:

jBR0�a (p; 0)j < 1:

A su¢ cient condition is that

8�a 2 [�1; 1] ; jBR0�a (p; �a)j < 1:

By the implicit function theorem, we have:

BR0�a (p; �a) = �
(1� p)u00a�a (BR (p; �a) ; �a)

pu00aa (BR (p; �a) ; 0) + (1� p)u00aa (BR (p; �a) ; �a)

Then, jBR0�a (p; 0)j < 1 writes (BR (p; 0) = 0)

1�
����u00aa (0; 0)u00a�a (0; 0)

���� < p;
or, equivalently:

p > 1� 1

jBR0�a (0; 0)j
: (7)

On the other hand, we have:

BR0�a (p; �a) = �
u00a�a (BR (p; �a) ; �a)

u00aa (BR (p; �a) ; �a)

1� p
p
u00aa(BR(p;�a);0)
u00aa(BR(p;�a);�a)

+ 1� p
;

= BR0�a (0; �a)
1� p

p
u00aa(BR(p;�a);0)
u00aa(BR(p;�a);�a)

+ 1� p
:

We then have:

1� p
p
u00aa(BR(p;�a);0)
u00aa(BR(p;�a);�a)

+ 1� p
� 1� p
pm+ 1� p ;

jBR0�a (p; �a)j � jBR0�a (0; �a)j
1� p

pm+ 1� p ;
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and sup�a2[�1;1] jBR0�a (p; a)j < 1 is implied by:

M
1� p

pm+ 1� p < 1:

If M < 1, then this inequality holds. Otherwise, it rewrites:

p > 1� m

m+M � 1 : (8)

The existence of p̂ is shown in Proposition 1. Inequalities (7) and (8) imply the
result.�

3 Epistemic conditions

In this section, we give epistemic conditions for a p-stable equilibrium. We
exhibit (common knowledge, CK hereafter) assumptions implying that the out-
come of the game is a p-stable equilibrium. These conditions provide some
epistemic motivation for our stability concept. Examples in the literature of
such assumptions include CK of rationality implies that the outcome is ratio-
nalizable (Tan and Werlang 1988), mutual knowledge of the payo¤ functions
and of rationality, and common knowledge of the conjectures imply Nash (Au-
mann and Brandenburger 1995) and common p-belief of rationality implies p-
rationalizability (Hu 2007).
We show that, for a given equilibrium ��, �

�
S1p

�
is the set of outcomes

compatible with CK of p-belief of �� and CK of rationality. Hence, p-stability
of an admissible equilibrium �� means that �� is the only outcome compatible
with these CK assumptions.
In order to de�ne events like "CK of rationality", we consider a universal

beliefs space 
 (Mertens and Zamir 1985). This is a formal model where a state
of the world speci�es everything: the state of nature (payo¤s, actions...) and
players� beliefs (summarized by the type of each player). Hence, events like
"everyone is rational" can be de�ned in 
.
In our framework, a state of the world ! 2 
 must specify the following two

items:

� the distributions of actions played (an element in T )

� the type of each player. The type of a player speci�es a probability distri-
bution on T and others�types (a player is assumed to know his own type,
not the others�ones). Hence, the type of a player with utility u is a belief
on 
, that is an element in �(
).

So that we must have:


 = T ��(
)UA(�);

where UA (�) is the support of the distribution � (UA (�) is a subset of the set
UA of utility functions).
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The question of the existence of such a universal beliefs space 
 is not a
trivial one. Mertens and Zamir (1985) give a positive answer in a framework
with �nitely many players. We assume existence of the universal beliefs space

 in our framework5 .
We now de�ne "events" (subsets of 
) like "everyone is rational" or "CK of

everyone being rational".
We �rst de�ne CK of an event E. For any event E � 
, the event "everyone

knows E" is de�ned by: �-almost everywhere, �u puts probability 1 on E, that
is:

K (E) = f! = (�; �) 2 
 : � (fu 2 UA (�) : �u (E) = 1g) = 1g :

where �u is u�s (i.e. a player located at u) beliefs (a probability distribution on

). Higher orders of knowledge of E are then iteratively de�ned by:

8n � 1;Kn+1 (E) = K (Kn (E)) :

Under the assumption K (E) � E ("no one knows E when E has not occurred"
- this assumption is implicit in the de�nition of 
), the sequence Kn (E) is
decreasing. Hence, it converges to a limit set K1 (E) = \n�1Kn (E). Common
knowledge of E is then de�ned as the event K1 (E).
We now de�ne CK of rationality. To this purpose, we �rst de�ne the event

"everyone is rational" using a BR correspondence extended to the case of het-
erogenous beliefs. This BR correspondence is

� : � (
)
UA(�) � T;

where for each � = (�u)u2UA(�) 2 �(
)
UA(�),

� 2 � (�), � (fu 2 UA (�) : � (B (u; �u;A) ju) = 1g) = 1:

In this expression, �u;A is the marginal distribution on the space A of actions
(�u;A is an element of �(A)). Thus, � 2 � (�) puts probability 1 on the fact
that u plays a BR to his belief �u;A about actions.
The event that everybody is rational is described by the set

R0 = f! = (�; �) 2 
 : � 2 � (�)g :

Higher order knowledge of rationality is described by the sequence of sets Rn =
Kn (R0) for n � 1. R1 = K1 (R0) is the set of states where rationality is
common knowledge.
Next we de�ne common knowledge of p�belief of ��. Let Bp0 � 
 be de�ned

as follows:

Bp0 = f! = (�; �) 2 
 : � (fu 2 UA (�) : �u;A (��a ) � pg) = 1g :
5We conjecture that the existence of 
 could be proven (to the extent where known argu-

ments on existence of universal belief spaces 
 rely on topological properties and coherence
only, and these two properties are inherited by uncountable products).
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Bp0 contains the states where the set of u such that �u;A (�
�
a ) � p has �-measure

1. Higher order knowledge of p�belief of �� is described by the sequence of sets
Bpn = K

n (Bp0) for n � 1. Bp1 = K1 (Bp0) is the set of states where p�belief of
�� is common knowledge.
We now state the main result of the section:

Proposition 3. proj:T (R1 \Bp1) = �
�
S1p

�
(that is: the projection on

T of the set R1 \ Bp1 is �
�
S1p

�
). Further, when �� is admissible, f��g =

proj:T (R1 \Bp1) is equivalent to p�stability of ��.

Proof. We proceed iteratively by relating the sets Snp to some knowledge
assumptions. Recall that, for any events E and F , we have K(E\F ) = K(E)\
K(F ).
The actions pro�les associated with the states in Bp0 \R0(that is: everyone

p�believes in �� and everyone is rational) are the actions pro�les in �
�
S0p
�
.

We iterate the argument. Assume that the actions pro�les associated with

the states inXn�1
def
= \0�k�n�1Kk (Bp0 \R0) are the actions pro�les in �

�
Sn�1p

�
.

At a state in Bp0 \ K (Xn�1) (that is: everyone p�believes in �� and every-
one knows that the action pro�le is in �

�
Sn�1p

�
), players�beliefs are on Snp =

S0p \�
�
Sn�1p

�
. Then, the actions pro�les associated with the states in R0\Bp0 \

K (Xn�1) (that is: everyone is rational and everyone knows that the action pro-
�le is in Snp ) are the actions pro�les in �

�
Snp
�
. Notice that R0\Bp0\K (Xn�1) =

Xn.
Taking the limit on n, it follows that the actions pro�les associated with the

states of nature in X1 = Bp1 \ R1 are the actions pro�les in �(S1p ). Then,
proj:T (R1 \Bp1) = �

�
S1p

�
.

To prove the last part of the proposition, note that S1p = �
�
S1p

�
\ S0p : the

outcomes in S1p are the pro�les of actions that are best responses to beliefs on
S1p and that put probability at least p on ��. If proj:T (R1 \Bp1) = f��g,
then �

�
S1p

�
= f��g and S1p = f��g: the equilibrium is p�stable. Con-

versely, if the equilibrium is p�stable, then proj:T (R1 \Bp1) = �
�
S1p

�
=

� (f��g). By de�nition, when �� is admissible, � (f��g) = f��g. It follows that
proj:T (R1 \Bp1) = f��g. �

4 How does "fundamental" uncertainty a¤ect
strategic stability?

The example below considers a "contagion" argument to build an incomplete
information game from a collection of complete information games where the
equilibrium is sometimes, but not always dominant solvable. This means that
we add payo¤ uncertainty (and informational asymmetry) to a complete infor-
mation game. We show that the degree of p�stability is bigger in the incomplete
information game than in the complete information game: adding uncertainty
on fundamentals unambiguously decreases strategic stability. This results holds
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in an example with strategic complementarities and in an example with strategic
substitutabilities.
The "contagion" (or "infection") argument6 is as follows. Consider a game

(with a given set of actions for each player). There are many states of nature
(a¤ecting the payo¤s of players). Under complete information, there is a dom-
inant action in some states, and no dominant in other states. The question is:
what should players do in these states with no dominant action? The "global
games" answer relies on viewing the "complete information" case as a limit of
the "incomplete information" case and showing that for some information struc-
tures, the equilibrium is dominant solvable in the incomplete information game.
The proof of this dominant solvability property is precisely what is called the
"contagion" argument: in some states, players knows "enough" about the state
to know that the action that was dominant in the complete information game is
still dominant in other states ("near" the states above) with this argument iter-
ated to extend to all the states so that players�behavior is uniquely determined
in every state (typically, players play in every state the action that is dominant
in the states mentioned in the �rst step of the "contagion" argument).
The example below is an example of a "contagion" argument in a case with a

continuum of actions and states. The game is the generic case where players are
homogenous, players play against the mean action of others, and best responses
are linear and vary continuously in the mean action. The information structure
is the quite common case where each player privately observes a noisy signal of
the true state (variables are normally distributed).
What makes the example more speci�c is that we consider a restricted strat-

egy set in the incomplete information game. This choice is made to reduce
the dimensionality of the game and has no other motivation than analytical
tractability.
Lastly, the "contagion" argument is not the same as usual. In the exam-

ple, there is no state where the equilibrium action is dominant under complete
information. The "contagion" argument relies on iterated dominance and not
on dominance only. Furthermore, we do not look at dominance solvability of
the equilibria in the complete and incomplete information games, we relate
p�stability of these equilibria.

4.1 The example

Consider a game where:

� the players are i 2 [0; 1],

� the state of nature is � with mean �� and precision �� (all the stochastic
variables are normally distributed on IR),

6See, for instance, Carlson and Van Damme for the seminal paper, Morris, Rob and Shin
(1995), Morris and Shin (1998) amongst many others for an example in a case with a continuum
of states
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� the private signal of i is si = �+ "i ("i has mean 0 and precision � , the "i
are i.i.d.),

� the action of i is xi 2 IR, the mean action is denoted X (denote X =R
xidi),

� a strategy of i is a function xi (si),

� the utility of i is
u (xi; X; �) = e

�Xxi �
1

2
x2i ;

The strategy pro�le xi (si) = 0 is an equilibrium of this game.
For analytical tractability, we restrict attention to the strategies xi (si) =

aie
�
��
si where ai is a real parameter in an interval A. The strategy of i is then

characterized by ai, and the strategy set is A. W.l.o.g. assume A = [�1; 1].
We stress the 3 properties that allows us to solve the model: (i) the strategy

set contains the equilibrium strategy xi (si) = 0; (ii) it is self-ful�lling (as shown
below): the best response to a strategy pro�le in this set is a strategy in this
set, (iii) it follows that the equilibrium is de�ned as a �xed point of a one-
dimensional temporary equilibrium map (the map T below) and stability is
de�ned/characterized by the condition jT 0j < 1.
When the strategy pro�le is (ai)i2[0;1] and the private signals are (si)i2[0;1],

the mean action is de�ned by:Z
xi (si) di =

Z
xi (� + ") dP (") ;

where P is the c.d.f. of a centered normal distribution with precision � . This
mean action writes then

X (�)
def
= �a

Z
e

�
��
(�+")

dP (") ;

where �a =
R
aidi. Standard computations (concerning log-normal distribu-

tions)7 imply:

X (�) = �ae
�
��

�
�+ 1

2��

�
: (9)

We now compute the best response map. This is purely routine (because
the stochastic variables are normally distributed):
Lemma 3. The best response xi (si) to a strategy pro�le (ai)i2[0;1] (with

�a =
R
aidi) is:

xi (si) = T (�a) e
�
��
si ;

7Recall the mean and variance of a log-normal distribution: the stochastic variable ex

(where x is a normally distributed variable with mean � and variance �2) has a mean e�+
�2

2

and a variance
e2�+�

2
(e�

2 � 1).
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where T (�a) is a best response map de�ned by

T (�a) def= �ae
��+

2�+��
2�2
� :

Proof. Equation (9) states that the mean action is

X (�) = �ae
�
��

�
�+ 1

2��

�
:

We then have:

xi (si) = E
�
e�X (�) jsi

�
= �ae

�
��

�
1
2��

� Z
e

�
1+ �

��

�
�
dP (�jsi) ;

where P (�jsi) is the c.d.f. of the law of � conditional to si (that is a normal
distribution with mean E = �� ��+�si

�+��
and precision T = � + ��). Standard

computations (concerning log-normal distributions again) imply:

xi (si) = �ae
�
��

�
1
2��

�
e

�
1+ �

��

�
E+

�
1+ �

��

�2
2T ;

xi (si) = �ae
��+

2�+��
2�2
�

+ �
��
si
:

The result follows. �

Notice that the equilibrium corresponds to the �xed point of T (that is
�a = 0, that corresponds to a strategy pro�le: ai = 0 for every i).
From a formal viewpoint, this game is an example of the smooth one-

dimensional case studied in Section 2.4. From Section 2.4, we know that a
characterization of p�stability relies on a best response map BR (p; �a) (see the
proof of Proposition 2). The example under consideration here appears to be
fully tractable and we get a more complete result than Proposition 2: we fully
characterize the degree of p�stability of the equilibrium.

Proposition 4. Under the assumption that the strategy set is restricted to
the strategies xi (si) = aie

si , the equilibrium xi (si) = 0 is p-stable i¤ p � p̂,
where:

p̂ = 1� e�
��� 1

��

�
1
2+

�
��

�
< 1:

In particular, the equilibrium is 0-stable i¤

�� < � 1
��

�
1

2
+
�

��

�
:

The proof elaborates on the proof of Proposition 2. Notice that p� is in-
creasing in ��, � and decreasing in ��: stability is favored by small ��, small �
and large ��. Notice that (i) small �� means that the event e� < 1 has a large
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probability; (ii) a small � means large informational asymmetries; (iii) a large
�� means a small uncertainty on �; (iv) there is no uniquely de�ned "complete

information" limit (lim(��;�)!(+1;+1)
1
��

�
1
2 +

�
��

�
is not well de�ned).

Proof. BR (p; �a) is the best response of player i to belief "probability p
on 0 and probability (1� p) on �a". Straightforwardly, the best response of i to
such belief is:

xi (si) = pE
�
e�X� (�) jsi

�
+ (1� p)E

�
e�X (�) jsi

�
;

where X� (�) is the equilibrium mean action (that is equal to 0) and X (�) is
de�ned as in Equation (9). Then, we have from Lemma 1

xi (si) = (1� p)E
�
e�X (�) jsi

�
= (1� p) T (�a) e

�
��
si ;

and it follows that
BR (p; �a) = (1� p) T (�a) :

As T is linear in �a, we conclude that the sequences an� and a
n
+ (de�ned in the

proof of Proposition 2) converge to 0 i¤ jBR0 (p; �a)j < 1, that is

(1� p) e
��+

2�+��
2�2
� < 1:

The value of p̂ follows. �

4.2 Link with the complete information game

In the complete information game associated with a state �, the best response
of i to a mean action X is:

xi = e
�X:

It is straightforward that the equilibrium is x� = 0 and 0-stability is equivalent
to e� < 1 (that is: � < 0). For � > 0, the equilibrium is not 0�stable, but
p�stability can be considered.
As this game is an example of the one-dimensional smooth case considered in

Section 2.4, we know that the analysis of p�stability relies on the best response
of i to p-beliefs assigning probability p to equilibrium X� = 0 and probability
(1� p) to some other mean strategy X. This best response is:

xi = e
� (pX� + (1� p)X) :

Considering the analysis made in Section 2.4 immediately shows that the equi-
librium is p�stable i¤

��dxi
dX

�� < 1. This condition writes (1� p) e� < 1, that is:
p � p̂ (�), with:

p̂ (�) = 1� e��:

p̂ (�) is increasing in �.
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We have seen above that, if we introduce some asymmetric uncertainty (as
de�ned above) on � (this uncertainty being centered on a certain value ��),
then the p-stability of the equilibrium of the incomplete information game is
characterized by p � p̂, with:

p̂
�
��; ��; �

�
= 1� e�

��� 1
��

�
1
2+

�
��

�
:

Note that e�
1
��

�
1
2+

�
��

�
< 1. It follows that

Proposition 5. Adding uncertainty on fundamentals unambiguously de-
creases strategic stability: for every �, �� and �

p̂
�
��
�
� p̂

�
��; ��; �

�
:

Remark. No equilibrium in the incomplete information game is 0�stable
when �� > 0. In other words, it is impossible to make an unstable equilibrium
(the equilibrium in the complete information game when � > 0) 0-stable by
adding some uncertainty centered on this �. To make this equilibrium 0-stable,
the uncertainty on � must be centered on a negative value (there must be some
kind of a bias in the prior beliefs on �).

4.3 The variant with strategic substitutes

The above example displays some kind of strategic complementarities. For ex-
ample, in the complete information game associated with the state �, the BR
of a player i is xi = e�X: it is increasing in others�mean action X.
We now show that the stability result is not a¤ected if the slope of the BR

map is reversed. That is: we consider a variant of the above game where the
BR to a mean strategy X (�) of a player i observing si is:

xi (si) = �E
�
e�X (�) jsi

�
:

Everything is thus exactly identical to the previous game, except the sign "-"
in the BR map. Straightforwardly, a best response to a mean strategy X (�) =

�ae
�
��

�
�+ 1

2��

�
(as de�ned in Equation (9)) is:

xi (si) = �T (�a) e
�
��
si ;

It follows that the unique equilibrium is still 0. The game is, as the initial one,
formally identical to a one-dimensional smooth example and it is easily checked
that the p�stability condition is the same as the one in the initial game.
An intuition for this common result is the following. What we have done

here is an example of an "infection" (or contagion) argument. This has nothing
to do with the complements/substitutes question. The idea is that: (i) there
is a subset of states where it is "CK enough" that e� < 1 to get stability in
this subset; (ii) the information structure is such that there is another subset
of states where (i) is "CK enough" and where every player puts a large enough
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probability on being in (i) (that is: to be in a stable state) to get stability in
this other subset; (iii) there is again another subset of states where (i) and (ii)
are "CK enough"... and the sequence of subsets of states de�ned in all these
steps (i), (ii), ... covers the whole set of states of nature.

5 Applications to exchange economies

In this section, we apply our notion of stability in exchange economies. We
model exchange non-cooperatively using market games whose noncooperative
equilibria coincide with competitive equilibria under certain conditions. In a
market game, the map that associates market prices to the actions of all individ-
uals is well-de�ned both out of equilibrium and at equilibrium. We reformulate
the stability problem of competitive equilibria as a coordination problem over
the expectations that agents have over market variables, like prices as traders
try to use structure of the game to converge back to equilibrium. The study
of the resulting coordination dynamics is thus an analysis of the stability of
competitive equilibria. We begin by examining the p�stability of a unique glob-
ally unstable equilibrium under tâtonnement dynamics. We, then, characterize
the conditions under which there is a trade-o¤ between enhanced equilibrium
e¢ ciency and stability in a simple market setting, with and without trading
frictions.

5.1 p-stability of a unique globally unstable equilibrium

The underlying exchange economy is the one studied by Scarf (1960) and the
unique competitive equilibrium is globally unstable under tâtonnement dynam-
ics. Scarf�s example of global instability of a unique competitive equilibrium
under tâtonnement dynamics has three commodities l = 1; 2; 3, a continuum
of individuals of measure one, and three types of agents (of equal measure),
I1; I2; I3 such that each i 2 I1 has preferences represented by a Leontie¤ utility
function min fx1; x2g with endowments wi = f1; 0; 0g, each j 2 I2 has prefer-
ences represented by a Leontie¤ utility function min fx2; x3g with endowments
wi = f0; 1; 0g, each k 2 I3 has preferences represented by a Leontie¤ utility
function min fx3; x1g with endowments wi = f0; 0; 1g. The unique competi-
tive equilibrium prices are (1; 1; 1) with allocations

�
1
2 ;

1
2 ; 0
	
for each i 2 I1,�

0; 12 ;
1
2

	
for each j 2 I2 and allocations

�
1
2 ; 0;

1
2

	
for each k 2 I3.

We model non-cooperative exchange using the Shapley window model, stud-
ied by Sahi and Yao (1989) in the case with a �nite number of traders and
Codognato and Ghosal (2000) for the case with a continuum of agents. Applied
to Scarf�s example, in the Shapley window model, (1) a strategy for agent i 2 I1
is a vector (bi12; b

i
13) � (0; 0) such that bi12 + b

i
13 � 1, (2) a strategy for agent

j 2 I2 is a vector (bj21; b
j
23) � (0; 0) such that b

j
21 + b

j
23 � 1,and (3) a strategy

for agent k 2 I3 is a vector (bk31; bk32) � (0; 0) such that bk31+ bk32 � 1. The inter-
pretation is that bhll0 is the amount of commodity l bid by agent h in exchange
for commodity l0.
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Given an assignment of bids b, we compute the 3�3 aggregate bids matrix �B
with �bll0 =

R
I
bhll0dh denoting the ll

0th component. Given b, and an irreducible
aggregate bids matrix �B, prices � exist if

� � 0;
X
l0

�l0�bl0l = �l
X
l0

�bll0 ; l = 1; 2; 3:

Intuitively, the price formation rule states that prices are formed to ensure that
the value of what is bid (using commodities l0) for each commodity l is equal to
the value of what is bid for commodities l0 using commodity l. The allocation
rule is

xhl (�(s); s
n) =

�wh
l �

X
l0

bhll0 +
X
l2L
bhl0l

�l(s)
�l0 (s)

; if � exists;

wh
l ; otherwise:

for l = 1; 2; 3.
Note that if � exists then so does ��, � > 0 and moreover the allocation

rule is unchanged if � is substituted for ��. In what follows, we will adopt the
normalization rule that �1 = 1.
Codognato and Ghosal (2000) show that as long as the aggregate bids ma-

trix �B is irreducible, there exists a unique (up to a scalar multiple) price �(�B).
It is straightforward to check that the set of Nash equilibrium prices and al-
locations coincide with Competitive equilibrium prices and allocations (all the
assumptions of Theorem 2 Codognato and Ghosal (2000) are satis�ed).
Let �(��) � IR2++ be a compact subset of market prices containing a com-

petitive equilibrium price ��. Although, so far, p�stability has been de�ned
directly on the strategies, motivated by the application to competitive markets,
it will be convenient to de�ne p-stability over prices. That we can do so without
loss of generality is a consequence of the following useful result.
Lemma 4. Let �(��) � IR2++ be a compact subset of market prices contain-

ing a competitive equilibrium price ��. Let bn be a sequence of assignments of
strategies such that �n = �

�
�Bn
�
2 �(��), n � 1,with limn!1 �

n = �. Then,
there exists a limit point bn, b, such that �

�
�B
�
= �.

Proof. Notice that the sequence of assignments bn, n � 1, is uniformly
integrable as bn is bounded below by the constant 0 and above by the constant
1. By Lemma 1 in Busetto, Codognato and Ghosal (2010), there exists a limit
point b of the sequence of the sequence of assignments bn, n � 1, which is itself
an assignment. By proceeding to a subsequence (denoted in the same way as
the original sequence to save on notation) if necessary, consider �n = �(Bn)
and with limn!1 �

n = �. As � 2 �(��) � IR2++, by Lemma 1 in Sahi and
Yao (1989), there exists �B the irreducible aggregate bids matrix corresponding
to �. The aggregate bids matrix for each element in the sequence bn, �Bn, is
by construction irreducible. Then, �B is the aggregate bids matrix such that
each element �bll0 = limn!1

R
I
bh;nll0 dh. By the generalization of Fatou�s lemma

in Artstein (1979), there exists a limit point b such that �bll0 =
R
I
bhll0dh =

limn!1
R
I
bh;nll0 dh, thus completing the proof.�
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Some notation. Let �p be the (Borel) probability distribution assigning prob-
ability at least p to �� with�p�(��) the corresponding set. We have a de�nition
by means of an iterative process. For any subset of market prices �0p (�

�) � IR2++
containing a market equilibrium price ��, for every p 2 [0; 1], we de�ne a se-
quence of price sets: for every n � 0, the set �n+1p (��) contains exactly the �
in �np (�

�) such that �l is generated by the price formation rule of the market
game where each agent is choosing a best-response to some �p 2 �np (��).
The de�nition is consistent as every �np (�

�) contains ��. The sequence
�np (�

�) is decreasing and therefore converges to a limit �1p (�
�) = \n�0�np (��).

Trivially, every �1p (�
�) contains at least �� and �11 (�

�) = f��g. If �1p (��) =
f��g for some p, then �1p0 (��) = f��g for every p0 � p. A market equilibrium
price ��is p-stable i¤ there is some p < 1, such that �1p (�

�) = f��g.
Note that in any best-response, for all i 2 I1, bi13 = 0, j 2 I2, b

j
21 = 0 and

for all k 2 I3, bk32 = 0. The equilibrium strategy of i 2 I1 is b�i12 = 1
2 . We now

show that for p large enough, each agent i 2 I1 plays the equilibrium strategy
whatever their p�belief is.
Consider the case when individual i 2 I1 attaches a probability p to �� and

attaches a probability 1 � p to some other positive market price ~� 6= �� =
(1; 1; 1). In this case, i 2 I1 solves

max p
�
min

�
1� bi12; bi12

	�
+ (1� p)

�
min

�
1� bi12; bi12

1

~�2

��
s:t: 0 � bi12 � 1:

Note that at any optimum, i must choose bi12 to solve either 1 � bi12 = bi12
or 1 � bi12 = bi12

1
~�2
. Suppose, to begin with, i chooses bi12 to solve 1 � bi12 =

bi12 or equivalently sets b
i
12 =

1
2 . In this case, when 1 > 1

~�2
, i0s payo¤ is

p
�
1
2

�
+(1� p)

�
1
~�2

2

�
while if 1 < 1

~�2
, i0s payo¤ is 12 . Now suppose i chooses b

i
12

to solve 1�bi12 = bi12 1
~�2
or equivalently bi12 =

1
1+ 1

~�2

. In this case, when 1 > 1
~�2
,

i0s payo¤ is
1
~�2

1+ 1
~�2

, while if 1 < 1
~�2
, i0s payo¤ is p

�
1

1+ 1
~�2

�
+ (1� p)

�
1
~�2

1+ 1
~�2

�
.

When 1 > 1
~�2
, if p = 1, as 1

2 >
1
~�2

1+ 1
~�2

, as long as p is close to one, bi12 =
1

1+ 1
��2

while when 1 < 1
~�2
if p = 1, as 1

2 >
1

1+ 1
~�2

and therefore, as long as p is close to

one, bi12 =
1
2 :

Next, we compute precise bounds on p. Consider i 2 I1. When 1 > 1
~�2
, to

ensure that bi12 =
1
2 , the inequality p

�
1
2

�
+ (1� p)

�
1
~�2

2

�
�

1
~�2

1+ 1
~�2

needs to be

satis�ed, which by computation is equivalent to p �
1
~�2

1+ 1
~�2

. When 1 < 1
~�2
, to

ensure that bi12 =
1
2 , the inequality

1
2 � p

�
1

1+ 1
~�2

�
+(1� p)

�
1
~�2

1+ 1
~�2

�
needs to be
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satis�ed, which by computation is equivalent to p � 1
2 i.e. p � max

�
1
~�2

1+ 1
~�2

; 12

�
.

As the computations are symmetric across the three types we obtain the in-

equality p � max
�

1
~�2

1+ 1
~�2

;
~�2
~�3

1+
~�2
~�3

; ~�3
1+~�3

; 12

�
. Notice that each element in the right

hand side of the preceding inequality is either constant or obtains a maximum
in any compact set of prices �(��) contained in the interior of the unit simplex
in IR3++ containing �

� The above discussion shows that, for p > �p, agents plays
the equilibrium strategy, whatever their belief (~�2; ~�3) is. Straightforwardly,
this statement extends to any belief in �p�(��) (that is: any distribution with
probability p at least on �� and with support in �(��)). We then have shown
that, for p > �p, p�belief on �� implies that the equilibrium is played: this is
p�dominance. This implies p�stability of �� and it is even a stronger property.
We summarize the above discussion as the following proposition:
Proposition 6. Suppose individuals initial expectations over prices lie in

a compact set �, a subset of the interior of the unit simplex in IR3++, which
contains ��. Then, there exists 0 < �p < 1 such that whenever p 2 (�p; 1]: the
market equilibrium price �� is p�dominant and hence, p�stable.
The above result demonstrates that the unique market equilibrium is p-stable

for some whenever p > p where 0 < p < 1. Although the equilibrium outcome
fails to be globally stable under tâtonnement dynamics, as p < 1 it does have a
measure of strategic stability. However, as �p > 0, equilibrium can never be the
unique rationalizable outcome.

5.2 Equilibrium e¢ ciency vs. the degree of strategic sta-
bility in a trading game

Here we study a simple trading game in two scenarios, one where a subset of
traders are constrained and another in which no trader is constrained. We study
the e¢ ciency and stability properties of the market equilibria in two scenarios.
In our trading game, a constrained market equilibrium will be ine¢ cient while
an unconstrained Nash equilibrium, which corresponds to a competitive equi-
librium, will be e¢ cient. We will show that the degree of strategic stability of
the constrained market equilibrium is higher than the degree of strategic stabil-
ity of the unconstrained market equilibrium although the latter yields e¢ cient
allocations while the former doesn�t: enhanced equilibrium e¢ ciency lowers the
degree of strategic stability in our trading game.
We consider a market with two commodities, l = 1; 2, and a continuum of

individuals, and two types of agents (of equal measure one each) I1; I2 such

that each i 2 I1 has preferences represented by the utility function x1 + x1�
2

1�
 ,
0 < 
 < 1, with endowments wi = fK; 0g, K > 1 each j 2 I2 has preferences
represented by the utility function x1��1

1�� + x2, 0 < � < 1, with endowments
wi = f0;Kg.
We model non-cooperative exchange using a modi�ed Shapley-Shubik mar-
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ket game (Shapley and Shubik (1977))8 In the market game (1) a strategy for
agent i 2 I1 is a bid bi � 0 such that bi � 1, (2) a strategy for agent j 2 I2
is an o¤er qj � 0 such that qj � �, 0 < � � K. The interpretation is that bi
(respectively qj) is the amount of commodity 1 (respectively, commodity 2) bid
by agent i (resp. agent j) in exchange for commodity 2 (resp. commodity 1).
Given an assignment of bids and o¤ers (b;q), we compute market price � as
follows:

� (B;Q) =

�B
Q if Q > 0

0 otherwise

and the allocation rule, if � exists, is xi1(b
i; �(B;Q)) = K�bi; i 2 I1, xi2(bi; �(B;Q)) =

bi

BQ; i 2 I1, x
j
1(q

j ; �(B;Q)) = qj

QB; j 2 I2, x
j
2(q

j ; �(B;Q)) = � � qj + (K �
�); j 2 I2, with the allocation rule yielding the initial endowments of traders if
� doesn�t exist. Given the allocation rule, � constrains the amount that type 2
traders can o¤er of commodity two.
In what follows we will focus on Nash equilibria with trade: we will call these

market equilibria.
Note that � is a measure of the friction in the market. It is straightforward

to check that when � � 1 the set of market equilibrium prices and allocations
coincide with competitive equilibrium prices and allocations (Dubey and Shap-
ley (1994)). On the other hand, if � = 0, the only Nash equilibrium involves
no trade, traders consume their endowments: in this case, the Nash equilibrium
is ine¢ cient. Clearly, under the assumed boundary condition on utilities, as
long as � is strictly positive but small (a precise bound is computed below), at
a market equilibrium, all traders who own commodity two will be constrained
and the resulting Nash equilibrium allocation will be ine¢ cient.
We will study two distinct market equilibria:
(i) Constrained market equilibria: all type 2 traders who own commodity

two are constrained (so that � is positive but close to zero), and
(ii) Unconstrained market equilibria: no type 2 trader who owns commodity

two is constrained i.e. all traders are at an interior solution to their maximization
problem (so that � � 1).
Let �(��) � IR++ be a compact subset of market prices containing the

competitive equilibrium price ��. As before, we will de�ne p�stability directly
over prices (and justify this step by invoking the argument symmetric to the
one used in the preceding subsection to prove Lemma 5).
p-stability of constrained market equilibrium
Fix the constrained market equilibrium price �� (computed explicitly below).

Let N (��) � IR++ be a compact set of prices containing ��. From a formal
viewpoint, the model under consideration is analogous to the one-dimensional
smooth case considered in Section 2.4. Namely, every agent�s decision is one-
dimensional, the price � is a one-dimensional variable that is determined by
agents�decision, and the best response of an agent is determined by his price

8 In the case of two commodities, the Shapely-Shubik market game is strategically equivalent
to the Shapley window model (with the normalization rule that �1 = 1) studied in the
preceding section.
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expectation. It follows that p�stability of the equilibrium price is characterized
using a one-dimensional temporary equilibrium map.9

We now de�ne this temporary equilibrium map. To this purpose, consider
the case when every individual attaches a probability p to �� and attaches a
probability 1� p to some other positive market price ~� 6= ��.
In this case, individual i 2 I1 solves

max
0�bi�1

K � bi + p
"
( b

i

�� )
1�


1� 


#
+ (1� p)

"
( b

i

~� )
1�


1� 


#
:

Notice that under the assumptions made so far, the payo¤ function in the above
maximization problem is strictly concave in bi and moreover has a unique in-
terior solution characterized by the �rst-order condition which yields the best
response bid:

bp (~�) =

"
p

�
1

��

�1�

+ (1� p)

�
1

~�

�1�
# 1



which is downward sloping in ~�. By computation note that the elasticity of the

bid function is "b;p (~�) =

����b0p(~�)bp(~�)

~�

���� = 1�


 (1�p)~�
�1

p( 1
�� )

1�

+(1�p)( 1~� )

1�
 . It turns out, given

the computations reported below, the elasticity of the bid function restricted to
p-beliefs and evaluated at the equilibrium price determined whether or not the
equilibrium is p-stable.
Next, notice that at a constrained market equilibrium, we must have that

j 2 I2 plays q� = �. This allows us to solve the market clearing equation
bp (�

�) = ��q� for the price ��: the equilibrium market price is �� = ��
 .
In order to ensure that at �� it is a best-response for each j 2 I2 to submit

a q� = �, observe that j 2 I2 solves

max
0�qj��

K � qj + p
�
(qj��)1��

1� �

�
+ (1� p)

�
(qj~�)1��

1� �

�
:

By computation, it follows that when � � 1, the derivative of the payo¤s of a
type two trader w.r.t. qj is positive at qj = � when ~� is in the neighborhood
of ��. We then choose N (��) small enough in order for qj = � to be a best
response when an individual j 2 I2 attaches a probability p to �� and attaches
a probability 1� p to some other positive market price ~� 6= �� in N (��). The
best response qj = � of j is then invariant to p and ~�.
De�ne the temporary equilibrium map as follows

�p (~�) =
bp (~�)

�
:

9We refer here to the characterization shown in the proof of Proposition 2. This is exactly
the same argument as the one used in Section 4 to characterize p�stability in the incomplete
information game.
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�p (~�) is the price that clears the markets whenever every agent attaches prob-
ability p on �� and probability (1� p) on ~�. The equilibrium price �� is the
unique �xed point of �p.
We know from the argument developed in Section 2.4 that p-stability of the

equilibrium obtains i¤ the map �p is contracting on N (��). The condition���0p (��)�� < 1 is then necessary for p�stability. We choose N (��) small enough
so that this condition is su¢ cient as well.
By computation,

���0p (��)�� = "b;p (�
�) = (1�
)


 (1� p). It follows that the
equilibrium is p�stable i¤ the bid function, restricted to p�beliefs and evaluated
at equilibrium, is inelastic.
Therefore, p-stability of the market equilibrium requires that (1�
)
 (1� p) <

1. Note as long as 1 > 
 > 1
2 ,

(1�
)

 < 1 and therefore the constrained market

equilibrium is 0�stable and hence p�stable for all p 2 [0; 1]. When 
 = 1
2 , the

constrained market equilibrium fails to be admissible.10 For 0 < 
 < 1
2 , by

computation, it is checked that the constrained market equilibrium is p�stable
whenever p � 1�2


1�
 where 1�2

1�
 < 1 as long as 0 < 
 <

1
2 .

Summing up, the minimum value of p for which the constrained Nash equi-

librium is p-stable is p̂ (��) = min
�
0; 1�2
1�


�
.11

p-stability of unconstrained market equilibrium
Now suppose � = 2 so that no trader is constrained in the trading game.

Fix the unconstrained market equilibrium (and competitive equilibrium) price
�̂� = 1. Let N (�̂�) � IR++ be a compact set of prices containing �̂�. The
analysis for type 1 individuals is similar to that of the previous case and isn�t
repeated here. Each type 2 individual�s unconstrained best-response is

qp (~�) =
h
p (��)

1��
+ (1� p) (~�)1��

i 1
�

;

which is upward sloping. By computation, we obtain that the elasticity of the

o¤er function is "q;p (~�) =
q0p(~�)
qp(~�)

~�

=
1��
� (1�p)~�1��

p(��)1��+(1�p)(~�)1�� .

Again, the characterization of p�stability relies on a temporary equilibrium
map. De�ne this map as follows

�̂p (~�) =
bp (~�)

qp (~�)
:

�̂p (~�) is the price that clears the markets whenever every agent attaches prob-
ability p on �̂� and probability (1� p) on ~�. The equilibrium price �̂� is the
unique �xed point of �p.

When N (�̂�) is small enough, p�stability of �̂� obtains i¤
����̂0p (�̂�)��� < 1. By

computation,
����̂0p (�̂�)��� = "b;p (�̂

�) + "q;p (�̂
�) where "b;p (�̂�) =

��� b0p(�̂
�)

bp(�̂�)=�̂�

��� =
10The slope of the best-response map is in�nite.
11The limit case 
 = 1=2 is omitted.
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(1�
)

 (1� p) is the elasticity of the bid function and "q;p (�̂�) =

q0p(�̂
�)

qp(�̂�)=�̂�
=

(1��)
� (1� p) is the elasticity of the o¤er function evaluated at �̂�. Therefore,

in the unconstrained case, the market equilibrium is p�stable when the sum
of the elasticities of the bid and the o¤er function, restricted to p�beliefs and
evaluated at equilibrium, is less than one.

Hence, the condition
����̂0p (�̂�)��� < 1 writes p > p̂ (�̂�), where

p̂ (�̂�) = min

�
0;

 + � � 3
�

 + � � 2
�

�
:12

Lastly, it follows from the above expressions of
����̂0p (�̂�)��� and ���0p (��)�� that����̂0p (�̂�)��� > ���0p (��)��, that is: p�stability of the unconstrained equilibrium

implies p-stability of the constrained equilibrium. In other words, we have
p̂ (�̂�) � p̂ (��).

We summarize the above analysis as the following proposition:
Proposition 7. When 0 < 
 < 1, 0 < � < 1, 
 6= 1=2 and , ��1 + 
�1 > 3,

the index of stability p̂ (��) of the e¢ cient unconstrained market equilibrium
is larger than the index of stability p̂ (�̂�) of the ine¢ cient constrained market
equilibrium. In other words, the unconstrained market equilibrium is less stable
than the constrained market equilibrium.

6 Conclusion

In this paper, we have de�ned a continuous index for stability that can be as-
signed to each equilibrium within a large class of games. A Nash equilibrium
is p�stable if it is the unique rationalizable outcome when all players attach
at least probability p < 1 to the equilibrium strategy. In smooth applications,
our stability index justi�es the intuition that the degree of equilibrium stability
relates to the slope of the best response map. The stability notion studied here
requires the equilibrium to be robust to strategic uncertainty and is de�ned
via an iterative elimination process. We showed that, for a given equilibrium,
p-stability means that the equilibrium con�guration of actions is the only out-
come compatible with common knowledge of p-belief of equilibrium and common
knowledge of rationality. Next, we developed a "contagion" argument relating
strategic stability in the complete information case to incomplete information
by adding payo¤ uncertainty (and informational asymmetry) to the underlying
complete information game. In a game with a continuum of actions where the
BR map is linear in the mean action (allowing for both strategic complemen-
tarities and substitutes), we showed that adding incomplete and asymmetric
information on the fundamentals decreases the degree of stability. In two ap-
plications of our stability concept to large markets, we showed that (i) in the

12 It follows that p̂ (�̂�) = 0 when ��1+
�1 � 3 so that we will assume that ��1+
�1 > 3.
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exchange economy studied by Scarf (1960) the actions of each trader at a Nash
equilibrium corresponding to the unique globally unstable competitive equilib-
rium is p-dominant, and the Nash equilibrium con�guration, p-stable for some
0 < p < 1, (ii) enhanced equilibrium e¢ ciency, by getting rid of trading frictions,
could lower its degree of strategic stability.
Extending the stability concept studied here to large multistage games and

applying the analysis to the stability of expectational coordination in intertem-
poral trade and �nancial markets are topics for future research.
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